Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria
- PMID: 24706784
- PMCID: PMC4020065
- DOI: 10.1073/pnas.1403051111
Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria
Abstract
Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.
Keywords: ecology; evolution; photoheterotroph; photoproteins; retinal.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Comment in
-
Nature's toolkit for microbial rhodopsin ion pumps.Proc Natl Acad Sci U S A. 2014 May 6;111(18):6538-9. doi: 10.1073/pnas.1405093111. Epub 2014 Apr 15. Proc Natl Acad Sci U S A. 2014. PMID: 24737891 Free PMC article. No abstract available.
Similar articles
-
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54. doi: 10.1128/MMBR.00003-16. Print 2016 Dec. Microbiol Mol Biol Rev. 2016. PMID: 27630250 Free PMC article. Review.
-
Presence of a Haloarchaeal Halorhodopsin-Like Cl- Pump in Marine Bacteria.Microbes Environ. 2018 Mar 29;33(1):89-97. doi: 10.1264/jsme2.ME17197. Epub 2018 Mar 16. Microbes Environ. 2018. PMID: 29553064 Free PMC article.
-
Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.J Biol Chem. 2016 Aug 19;291(34):17488-17495. doi: 10.1074/jbc.M116.728220. Epub 2016 Jun 30. J Biol Chem. 2016. PMID: 27365396 Free PMC article.
-
Implications for the Light-Driven Chloride Ion Transport Mechanism of Nonlabens marinus Rhodopsin 3 by Its Photochemical Characteristics.J Phys Chem B. 2017 Mar 9;121(9):2027-2038. doi: 10.1021/acs.jpcb.6b11101. Epub 2017 Mar 1. J Phys Chem B. 2017. PMID: 28194973
-
The light-driven sodium ion pump: A new player in rhodopsin research.Bioessays. 2016 Dec;38(12):1274-1282. doi: 10.1002/bies.201600065. Epub 2016 Nov 17. Bioessays. 2016. PMID: 27859420 Review.
Cited by
-
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54. doi: 10.1128/MMBR.00003-16. Print 2016 Dec. Microbiol Mol Biol Rev. 2016. PMID: 27630250 Free PMC article. Review.
-
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains.PLoS One. 2019 Oct 10;14(10):e0222648. doi: 10.1371/journal.pone.0222648. eCollection 2019. PLoS One. 2019. PMID: 31600234 Free PMC article.
-
Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light.Biophys Rev. 2020 Apr;12(2):453-459. doi: 10.1007/s12551-020-00676-7. Epub 2020 Mar 12. Biophys Rev. 2020. PMID: 32166612 Free PMC article. Review.
-
Presence of a Haloarchaeal Halorhodopsin-Like Cl- Pump in Marine Bacteria.Microbes Environ. 2018 Mar 29;33(1):89-97. doi: 10.1264/jsme2.ME17197. Epub 2018 Mar 16. Microbes Environ. 2018. PMID: 29553064 Free PMC article.
-
Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR).J Biol Chem. 2025 Apr;301(4):108334. doi: 10.1016/j.jbc.2025.108334. Epub 2025 Feb 19. J Biol Chem. 2025. PMID: 39984052 Free PMC article.
References
-
- Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins: Structures and functions from archaea to humans. Annu Rev Cell Dev Biol. 2000;16:365–392. - PubMed
-
- Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233(39):149–152. - PubMed
-
- Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin: A comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 1977;78(1):237–243. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases