Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation
- PMID: 24706905
- PMCID: PMC3986152
- DOI: 10.1073/pnas.1312717110
Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation
Abstract
Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







References
-
- Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–787. - PubMed
-
- Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061. - PubMed
-
- Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–336. - PubMed
-
- Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–342. - PubMed
-
- Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–21. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases