Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;90(1):77-88.
doi: 10.1111/brv.12099. Epub 2014 Apr 7.

Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development

Affiliations
Review

Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development

Angelica Valente et al. Biol Rev Camb Philos Soc. 2015 Feb.

Abstract

An increase in energy intake and/or a decrease in energy expenditure lead to fat storage, causing overweight and obesity phenotypes. The objective of this review was to analyse, for the first time using a systematic approach, all published evidence from the past 8 years regarding the molecular pathways linking non-shivering thermogenesis and obesity in mammals, focusing on mechanisms involved in brown adipose tissue development. Two major databases were scanned from 2006 to 2013 using 'brown adipose tissue' AND 'uncoupling protein-1' AND 'mammalian thermoregulation' AND 'obesity' as key words. A total of 61 articles were retrieved using the search criteria. The available research used knockout methodologies, various substances, molecules and agonist treatments, or different temperature and diet conditions, to assess the molecular pathways linking non-shivering thermogenesis and obesity. By integrating the results of the evaluated animal and human studies, our analysis identified specific molecules that enhance non-shivering thermogenesis and metabolism by: (i) stimulating 'brite' (brown-like) cell development in white adipose tissue; (ii) increasing uncoupling protein-1 expression in brite adipocytes; and (iii) augmenting brown and/or brite adipose tissue mass. The latter can be also increased through low temperature, hibernation and/or molecules involved in brown adipocyte differentiation. Cold stimuli and/or certain molecules activate uncoupling protein-1 in the existing brown adipocytes, thus increasing total energy expenditure by a magnitude proportional to the number of available brown adipocytes. Future research should address the interplay between body mass, brown adipose tissue mass, as well as the main molecules involved in brite cell development.

Keywords: brite cells; energy expenditure; metabolism; retinaldehyde dehydrogenase 1; tri-iodothyronine; uncoupling protein-1; white adipose tissue.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources