Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;53(1):124-31.
doi: 10.1111/j.1471-4159.1989.tb07303.x.

Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex

Affiliations

Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex

C M Becker et al. J Neurochem. 1989 Jul.

Abstract

The inhibitory glycine receptor of mammalian spinal cord is a ligand-gated chloride channel that, on affinity purification, contains two subunits of 48-kilodalton (kD) and 58-kD molecular mass in addition to an associated 93-kD protein. Ligand-binding 48-kD subunit and 93-kD protein were quantified in the CNS of the adult rat using a newly developed dot receptor assay (detection limit less than or equal to 1 fmol/assay) which employs monoclonal antibodies specific for glycine receptor polypeptides. The 93-kD protein was found to codistribute at a fixed stoichiometry with the 48-kD subunit throughout the CNS of the rat. Moreover, the 93-kD protein cofractionated with the ligand-binding subunit on solubilization and affinity chromatography or immunoprecipitation. However, both proteins were separated on sucrose gradient centrifugation of detergent extracts of spinal cord membranes in accord with earlier observations on purified receptor. These data prove that the 93-kD polypeptide is selectively associated with the membrane core of the strychnine-sensitive glycine receptor. The regional distribution of glycine receptor polypeptides was also determined in the CNS of the spastic rat mutant. In contrast to hereditary spasticity in mouse and cattle, no reduction of glycine receptors was found in the spastic rat.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources