Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 8:14:245.
doi: 10.1186/1471-2407-14-245.

Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer

Affiliations

Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer

Alexander B Philipp et al. BMC Cancer. .

Abstract

Background: Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1 in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate marker. Additionally the prognostic impact of these markers was examined.

Methods: Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR (MethyLight). LDH was determined using an UV kinetic test.

Results: Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18 for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients with a worse prognosis in the subgroup of stage IV patients.

Conclusions: We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is strongly correlated with cell death in CRC using LDH as surrogate marker. Additionally, we found that prognostic information is given by both HLTF and HPP1 as well as LDH. In sum, determining the methylation of HLTF and HPP1 in serum might be useful in order to identify patients with more aggressive tumors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
LDH values and methylation status of HLTF , HPP1 and NEUROG1 (as binary variables, cutoff PMR > 0).
Figure 2
Figure 2
Kaplan-Meier plots of overall survival. A-C: Overall survival for all patients according to methylation status of HLTF(A), HPP1(B) and high LDH levels > 250 U/l (C), respectively. D-F: Overall survival for stage IV patients patients according to methylation status of HLTF(D), HPP1(E) and high LDH levels > 250 U/l (F), respectively.

Similar articles

Cited by

References

    1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516. - DOI - PubMed
    1. O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004;96:1420–1425. doi: 10.1093/jnci/djh275. - DOI - PubMed
    1. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692. doi: 10.1016/j.cell.2007.01.029. - DOI - PMC - PubMed
    1. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–116. doi: 10.1038/nrc1799. - DOI - PubMed
    1. Duffy MJ, Napieralski R, Martens JWM, Span PN, Spyratos F, Sweep FCGJ, Brunner N, Foekens JA, Schmitt M. Methylated genes as new cancer biomarkers. Eur J Cancer. 2009;45:335–346. doi: 10.1016/j.ejca.2008.12.008. - DOI - PubMed

Publication types

MeSH terms