Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 3;6(1):7.
doi: 10.1186/1868-7083-6-7.

Allelic variation in the canine Cox-2 promoter causes hypermethylation of the canine Cox-2 promoter in clinical cases of renal dysplasia

Affiliations

Allelic variation in the canine Cox-2 promoter causes hypermethylation of the canine Cox-2 promoter in clinical cases of renal dysplasia

Mary H Whiteley. Clin Epigenetics. .

Abstract

Background: Novel allelic variants in the promoter of the canine cyclooxygenase-2 (Cox-2) gene are associated with renal dysplasia (RD). These variants consist of either deletions of putative SP1 transcription factor-binding sites or insertions of tandem repeats of SP1-binding sites located in the CpG island just upstream of the ATG translation initiation site. The canine Cox-2 gene was studied because Cox-2-deficient mice have renal abnormalities and a pathology that is strikingly similar to RD in dogs.

Findings: The allelic variants were associated with hypermethylation of the Cox-2 promoter only in clinical cases of RD. The wild-type allele was never methylated, even in clinical cases that were heterozygous for a mutant allele. In cases that were biopsy-negative, the promoter remained unmethylated, regardless of the genotype. Methylated DNA was found in DNA from various adult tissues of dogs with clinical RD.

Conclusions: The mechanism of action of the allelic variation in the canine Cox-2 promoter most likely involves variation in the extent of epigenetic downregulation of this gene. This epigenetic downregulation must have occurred early in development because methylated Cox-2 promoter DNA sequences are found in various adult tissues.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Allelic variants in the cyclooxygenase-2 (Cox-2) promoter, just upstream of the ATG translation start site. Allelic variant 1 has DNA sequences that are deleted; these sequences are boxed with the number 1 below the box. Allelic variants 2 and 3 contain insertions. Allele 2 is underlined and not shaded. Allele 3 contains a further insertion of sequences at nucleotide -78 relative to the ATG start, and is a duplication of the inserted sequences in allele 2. Allelic variant 4 contains a deletion of 6 nucleotides (CCGCCG) and is boxed and marked with the number 4 below the box. The sequences of the complete promoter region and 5′ untranslated region are deposited in GenBank under accession number AY927786.1.
Figure 2
Figure 2
Representative results of methylation-specific PCR experiments with the dogs described in Table1. The sizes of the alleles are as follows: wild-type allele, 187 bp; Allele 1, 170 bp; Allele 2, 99 bp; Allele 3, 211 bp; Allele 4, 181 bp. Cases 1–5 are biopsy-positive dogs. Cases 6–8 are biopsy-negative dogs. U is the unmethylated DNA from the methylation-specific PCR, and M is the methylated DNA. The final two lanes represent negative controls (no DNA) for the methylation-specific PCR experiments. In the case of heterozygotes, a heteroduplex band (marked with an H) is presented above the actual alleles. wt, Wild-type.
Figure 3
Figure 3
Representative electropherograms from the DNA sequencing of bisulfite-converted DNA. (A) DNA that has not been converted with bisulfite (normal sequence). The primer set for this experiment was primer set 1 from reference [11]. (B) Wild-type allele showing that the CpG island of the Cox-2 promoter is unmethylated. (C) Electropherogram showing dense methylation of multiple alleles throughout the CpG island of the cyclooxygenase-2 (Cox-2) gene. (D) Electropherogram from Case number 2 (Shiz tzu) showing complete hypermethylation of the Cox-2 CpG island.

References

    1. Dressler GR. Epigenetics, development, and the kidney. J Am Soc Nephrol. 2008;11:2060–2070. - PubMed
    1. Smith WL, DeWitt DL, Garavito RM. CYCLOOXYGENASES: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–182. doi: 10.1146/annurev.biochem.69.1.145. - DOI - PubMed
    1. Harper KA, Tyson-Capper AJ. Complexity of COX-2 gene regulation. Biochem Soc Trans. 2008;36:543–545. doi: 10.1042/BST0360543. - DOI - PubMed
    1. Okamoto T, Hino O. Expression of cyclooxygenase-1 and -2 mRNA in rat tissues: tissue-specific difference in the expression of the basal level of mRNA. Int J Mol Med. 2000;4:455–457. - PubMed
    1. Dinchuk JE, Car BD, Focht RJ, Johnston JJ, Jaffee D, Covington MB, Contel NR, Eng VM, Collins RJ, Czerniak PM, Gorry SA, Trzaskos JM. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995;23:406–409. - PubMed