Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 3:15:55.
doi: 10.1186/1471-2369-15-55.

Metabolic acidosis and the progression of chronic kidney disease

Affiliations

Metabolic acidosis and the progression of chronic kidney disease

Wei Chen et al. BMC Nephrol. .

Abstract

Metabolic acidosis is a common complication of chronic kidney disease. Accumulating evidence identifies acidosis not only as a consequence of, but as a contributor to, kidney disease progression. Several mechanistic pathways have been identified in this regard. The dietary acid load, even in the absence of overt acidosis, may have deleterious effects. Several small trials now suggest that the treatment of acidosis with oral alkali can slow the progression of kidney disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pathogenesis of kidney disease progression due to chronic metabolic acidosis. Metabolic acidosis and/or a high dietary acid load may contribute to progressive kidney disease through multiple mechanisms, including increased ammonia generation per nephron leading to activation of the alternative complement pathway and increased endothelin-1 and aldosterone levels in the kidney. Each of these factors may cause tubule-interstitial injury leading to a decline in kidney function. Hyperaldosteronism could also accelerate glomerulosclerosis, although glomerular injury due to metabolic acidosis has not been reported in animal models.

References

    1. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–2047. doi: 10.1001/jama.298.17.2038. - DOI - PubMed
    1. Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, M’Rad MB, Jacquot C, Houillier P, Stengel B, Fouqueray B. the NephroTest Study Group. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20(1):164–171. doi: 10.1681/ASN.2008020159. - DOI - PMC - PubMed
    1. Eustace JA, Astor B, Muntner PM, Ikizler TA, Coresh J. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int. 2004;65(3):1031–1040. doi: 10.1111/j.1523-1755.2004.00481.x. - DOI - PubMed
    1. Shah SN, Abramowitz M, Hostetter TH, Melamed ML. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis. 2009;54(2):270–277. doi: 10.1053/j.ajkd.2009.02.014. - DOI - PMC - PubMed
    1. Kraut JA, Mishler DR, Singer FR, Goodman WG. The effects of metabolic acidosis on bone formation and bone resorption in the rat. Kidney Int. 1986;30(5):694–700. doi: 10.1038/ki.1986.242. - DOI - PubMed

Publication types