PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer's disease and Lewy body disorders
- PMID: 24716655
- PMCID: PMC4027995
- DOI: 10.1186/1471-2377-14-79
PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer's disease and Lewy body disorders
Abstract
Background: Biomarkers based on the underlying pathology of Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson's disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2).
Methods: Patients with DLB and AD, Parkinson's disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism.
Results: 11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p < 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011).
Conclusions: The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients (ClinicalTrials.gov identifier: NCT00857506, registered March 5, 2009).
Figures
References
-
- Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Lowenstein D, Waters C, Jimison P, Shepherd E, Sevush S, Graff-Radford N, Newland D, Todd M, Miller B, Gold M, Heilman K, Doty L, Goodman I, Robinson B, Pearl G, Dickson D, Duara R. Relative Frequencies of Alzheimer Disease, Lewy Body, Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord. 2002;16:203–212. doi: 10.1097/00002093-200210000-00001. - DOI - PubMed
-
- McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN, Kaufer D, Kenny RA, Korczyn A. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–1872. doi: 10.1212/01.wnl.0000187889.17253.b1. - DOI - PubMed
-
- Lippa CF, Duda JE, Grossman M, Hurtig HI, Aaersland D, Boeve BF, Brooks DJ, Dickson DW, Dubois B, Emre M, Fahn S, Farmer JM, Galasko D, Galvin JE, Goetz CG, Growdon JH, Gwinn-Hardy KA, Hardy J, Heutink P, Iwatsubo T, Kosaka K, Lee VM, Leverenz JB, Masliah E, McKeith IG, Nussbaum RL, Olanow CW, Ravina BM, Singleton AB, Tanner CM. et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology. 2007;68:812–819. doi: 10.1212/01.wnl.0000256715.13907.d3. - DOI - PubMed
-
- Tsuang D, Simpson K, Larson EB, Peskind E, Kukull W, Bowen JB, McCormick W, Teri L, Montine T, Thompson ML, Leverenz JB. Predicting Lewy Body Pathology in a Community-Based Sample With Clinical Diagnosis of AlzheimerΓÇÖs Disease. J Geriatr Psychiatry Neurol. 2006;19:195–201. doi: 10.1177/0891988706292755. - DOI - PubMed
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
