Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jun 25;264(18):10799-809.

Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro

Affiliations
  • PMID: 2471707
Free article

Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro

D Reines et al. J Biol Chem. .
Free article

Abstract

Elongation and termination by RNA polymerase II are important regulatory steps for eukaryotic gene expression. We have previously studied the transcription of linear DNA templates where specific initiation of transcription by highly purified RNA polymerase II can be achieved in the absence of promoters and promoter-specific factors. Using these templates we have shown that a human histone gene, H3.3, contains sequences (intrinsic terminators) within which purified RNA polymerase II will efficiently terminate transcription (Reines, D., Wells, D., Chamberlin, M.J., and Kane, C. M. (1987) J. Mol. Biol. 196, 299-312). Curiously, these signals were found within an intron, 3'-untranslated, and protein-encoding regions of the gene suggesting that they might act to attenuate transcription of H3.3 in vivo. Here we show that intrinsic terminator sequences from an H3.3 gene intron also block in vitro transcript elongation by RNA polymerase II when the enzyme has initiated transcription from a promoter using highly purified transcription initiation factors. However, under the conditions used for promoter-specific transcription there is little transcript release. Instead the polymerase can pause at these sites for periods exceeding 60 min. We have identified and partially purified an activity from HeLa cells that causes the transcription complex to read through this block to transcription elongation. This readthrough activity fractionates with a previously characterized elongation factor (SII) over three chromatographic columns. A homogeneous preparation of calf thymus SII can also provide this activity in trans. This factor may facilitate passage of the RNA polymerase II transcription complex through such intragenic sites in cellular genes in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources