Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 10:11:54.
doi: 10.1186/1743-0003-11-54.

Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients

Affiliations

Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients

Anna Sofia Delussu et al. J Neuroeng Rehabil. .

Abstract

Background: Robotic-assisted walking after stroke provides intensive task-oriented training. But, despite the growing diffusion of robotic devices little information is available about cardiorespiratory and metabolic responses during electromechanically-assisted repetitive walking exercise. Aim of the study was to determine whether use of an end-effector gait training (GT) machine with body weight support (BWS) would affect physiological responses and energy cost of walking (ECW) in subacute post-stroke hemiplegic patients.

Participants: six patients (patient group: PG) with hemiplegia due to stroke (age: 66 ± 15y; time since stroke: 8 ± 3 weeks; four men) and 6 healthy subjects as control group (CG: age, 76 ± 7y; six men).

Interventions: overground walking test (OWT) and GT-assisted walking with 0%, 30% and 50% BWS (GT-BWS0%, 30% and 50%).

Main outcome measures: heart rate (HR), pulmonary ventilation, oxygen consumption, respiratory exchange ratio (RER) and ECW.

Results: Intervention conditions significantly affected parameter values in steady state (HR: p = 0.005, V'E: p = 0.001, V'O2: p < 0.001) and the interaction condition per group affected ECW (p = 0.002). For PG, the most energy (V'O2 and ECW) demanding conditions were OWT and GT-BWS0%. On the contrary, for CG the least demanding condition was OWT. On the GT, increasing BWS produced a decrease in energy and cardiac demand in both groups.

Conclusions: In PG, GT-BWS walking resulted in less cardiometabolic demand than overground walking. This suggests that GT-BWS walking training might be safer than overground walking training in subacute stroke patients.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Patient on the Gait Trainer.
Figure 2
Figure 2
Energy cost of walking results in the observed walking conditions in both groups. Legenda. ECW: energy cost of walking measured in millilitres/kilogram/meter (ml/kg/m); OWT: overground walking test; GT-BWS 0%, 30%, 50%: walking tests on the Gait Trainer with 0%, 30% and 50% of subjects’ mass body weight support.
Figure 3
Figure 3
Changes in cardiac and metabolic data at Steady State as percentages of resting values. Legenda. HR: heart rate: V’O2: oxygen consumption; V’E: pulmonary ventilation; OWT: overground walking test; GT-BWS 0%, 30%, 50%: walking tests on the Gait Trainer with 0%, 30% and 50% subjects’ mass body weight support.

Similar articles

Cited by

References

    1. Langhammer B, Stanghelle JK, Lindmark B. Exercise and health-related quality of life during the first year following acute stroke. A randomized controlled trial. Brain Inj. 2008;22:135–145. doi: 10.1080/02699050801895423. - DOI - PubMed
    1. Langhammer B, Stanghelle JK. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil. 2000;14:361–369. doi: 10.1191/0269215500cr338oa. - DOI - PubMed
    1. van DP I, Wood-Dauphinee S, Lindeman E, Kwakkel G. Effects of exercise training programs on walking competency after stroke: a systematic review. Am J Phys Med Rehabil. 2007;86:935–951. doi: 10.1097/PHM.0b013e31802ee464. - DOI - PubMed
    1. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18:833–862. doi: 10.1191/0269215504cr843oa. - DOI - PubMed
    1. Kwakkel G, van Peppen R, Wagenaar RC, Wood DS, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d. - DOI - PubMed

Publication types