Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2014 Sep;60(3):678-85.e2.
doi: 10.1016/j.jvs.2014.03.004. Epub 2014 Apr 8.

Routine use of completion imaging after infrainguinal bypass is not associated with higher bypass graft patency

Affiliations
Free article
Observational Study

Routine use of completion imaging after infrainguinal bypass is not associated with higher bypass graft patency

Tze-Woei Tan et al. J Vasc Surg. 2014 Sep.
Free article

Abstract

Background: Significant variability exists in completion imaging (CIM) after infrainguinal lower extremity bypass (LEB). We evaluated the use of CIM and compared graft patency in patients treated by surgeons who performed routine CIM vs those who performed selective CIM.

Methods: We reviewed the Vascular Study Group of New England database (2003-2010) and assessed the use of CIM (angiography or duplex ultrasound) among patients undergoing LEB. The surgeon-specific CIM strategy was categorized as routine (≥80% of LEBs) vs selective (<80% of LEBs). Exclusion criteria included acute limb ischemia, bilateral procedures, and surgeon volume <10 cases per study period. Primary graft patency at discharge and at 1 year was analyzed on the basis of CIM use and surgeon-specific CIM strategy. Multivariable analyses were performed using Poisson regression.

Results: Among 2032 LEB procedures performed by 48 surgeons, CIM was used in 1368 cases (67.3%). CIM was performed in 72% of autogenous LEBs and 52% of prosthetic grafts. Dialysis (odds ratio [OR], 1.7; 95% confidence interval [CI], 1.1-2.6; P = .01), elective LEB (OR, 2.6; 95% CI, 1.4-4.8; P = .002), great saphenous vein conduit (OR, 2.0; 95% CI, 1.6-2.5; P < .001), and tibial or pedal target artery (OR, 1.8; 95% CI, 1.4-2.3; P < .001) were associated with CIM use. In multivariate models, CIM was not associated with improved primary graft patency at discharge (OR, 1.1; 95% CI, 0.7-1.7; P = .64) or at 1 year (OR, 0.9; 95% CI, 0.7-1.2; P = .47). Sixteen surgeons (33%) were routine users and 32 (67%) were selective users of CIM. Among patients of routine vs selective CIM users, primary graft patency at discharge and at 1 year was 96% vs 94% (P = .21) and 68% vs 72% (P = .09), respectively. In multivariate analysis, routine or selective CIM strategy was not associated with improved discharge (rate ratio, 0.8; 95% CI, 0.6-1.1; P = .31) or 1-year (rate ratio, 1.1; 95% CI, 0.9-1.2; P = .56) graft patency.

Conclusions: In our observational cohort, CIM does not improve short-term and 1-year bypass graft patency in infrainguinal LEB. The surgeon-specific strategy of selective CIM after LEB has outcomes comparable to those of routine CIM.

PubMed Disclaimer

Publication types

MeSH terms