Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 May;18(4):660-73.
doi: 10.1016/j.media.2014.02.009. Epub 2014 Mar 4.

Dual optimization based prostate zonal segmentation in 3D MR images

Affiliations
Comparative Study

Dual optimization based prostate zonal segmentation in 3D MR images

Wu Qiu et al. Med Image Anal. 2014 May.

Abstract

Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC.

Keywords: 3D prostate MRI; Convex optimization; Multi-region segmentation; Zonal segmentation.

PubMed Disclaimer

Publication types

LinkOut - more resources