Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;38(7):874-80.
doi: 10.2337/diab.38.7.874.

Effect of rise in cAMP levels on Ca2+ influx through voltage-dependent Ca2+ channels in HIT cells. Second-messenger synarchy in beta-cells

Affiliations

Effect of rise in cAMP levels on Ca2+ influx through voltage-dependent Ca2+ channels in HIT cells. Second-messenger synarchy in beta-cells

A S Rajan et al. Diabetes. 1989 Jul.

Abstract

With a glucose-responsive beta-cell line (HIT cells), we tested the hypothesis that the cytosolic free-Ca2+ level ([Ca2+]i) is an intracellular signal through which a rise in cyclic AMP (cAMP) levels is transmitted to potentiate glucose-stimulated insulin secretion. In these cells, glucose stimulates the acute release of insulin without increasing [Ca2+]i or altering cAMP content. Either forskolin or 3-isobutylmethylxanthine (IBMX) potentiated glucose-stimulated insulin secretion and increased cAMP levels. At either a submaximal glucose concentration or maximally stimulatory glucose concentration, both IBMX and forskolin triggered a rapid rise in [Ca2+]i (1.9- and 1.5-fold increase over basal levels, respectively). Similarly, glucagon stimulated a 1.3-fold increase in [Ca2+]i over basal levels. The effect on [Ca2+]i required glucose and was secondary to Ca2+ influx through voltage-dependent Ca2+ channels because it was blocked by either chelation of extracellular Ca2+ with EGTA or by the Ca2+-channel blockers verapamil and nimodipine. Verapamil also inhibited IBMX potentiation of glucose-stimulated insulin secretion and the IBMX-induced rise in [Ca2+]i in a dose-dependent manner with IC50s of 2 x 10(-5) and 4 x 10(-6) M, respectively. We conclude that in the beta-cell, a rise in cAMP levels increases Ca2+ influx through voltage-dependent Ca2+ channels and that this represents a mechanism by which cAMP potentiates glucose-stimulated insulin secretion in beta-cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources