Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias
- PMID: 24723657
- PMCID: PMC4040460
- DOI: 10.1161/CIRCRESAHA.114.300569
Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias
Abstract
This Controversies in Research article discusses the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the Ryanodine Receptor (RyR) at a single serine (RyRS2808) is essential for normal sympathetic regulation of cardiac myocyte contractility and is responsible for the disturbed Ca(2+) regulation that underlies depressed contractility in heart failure. Studies supporting this hypothesis have associated hyperphosphorylation of RyRS2808 and heart failure progression in animals and humans and have shown that a phosphorylation defective RyR mutant mouse (RyRS2808A) does not respond normally to sympathetic agonists and does not exhibit heart failure symptoms after myocardial infarction. Studies to confirm and extend these ideas have failed to support the original data. Experiments from many different laboratories have convincingly shown that PKA-mediated RyRS2808 phosphorylation does not play any significant role in the normal sympathetic regulation of sarcoplasmic reticulum Ca2+ release or cardiac contractility. Hearts and myocytes from RyRS2808A mice have been shown to respond normally to sympathetic agonists, and to increase Ca(2+) influx, Ca(2+) transients, and Ca(2+) efflux. Although the RyR is involved in heart failure-related Ca(2+) disturbances, this results from Ca(2+)-calmodulin kinase II and reactive oxygen species-mediated regulation rather than by RyR2808 phosphorylation. Also, a new study has shown that RyRS2808A mice are not protected from myocardial infarction. Collectively, there is now a clear consensus in the published literature showing that dysregulated RyRs contribute to the altered Ca(2+) regulatory phenotype of the failing heart, but PKA-mediated phosphorylation of RyRS2808 has little or no role in these alterations.
Keywords: heart failure; myocardial contraction; ryanodine receptor calcium release channel.
Conflict of interest statement
Comment in
-
Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease.Circ Res. 2014 Apr 11;114(8):1311-9; discussion 1319. doi: 10.1161/CIRCRESAHA.114.300568. Circ Res. 2014. PMID: 24723656 Free PMC article.
References
-
- Houser SR, Margulies KB. Is depressed myocyte contractility centrally involved in heart failure? Circ Res. 2003;92:350–358. - PubMed
-
- Piacentino V, 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res. 2003;92:651–658. - PubMed
-
- Chen X, Piacentino V, 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res. 2002;91:517–524. - PubMed
-
- Houser SR, Piacentino V, 3rd, Mattiello J, Weisser J, Gaughan JP. Functional properties of failing human ventricular myocytes. Trends Cardiovasc Med. 2000;10:101–107. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
