Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug:165:314-8.
doi: 10.1016/j.biortech.2014.03.112. Epub 2014 Mar 31.

Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1

Affiliations

Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1

Aditya Bhalla et al. Bioresour Technol. 2014 Aug.

Abstract

A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37kDa) exhibited high specific activity of 461.0U/mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. The endo-xylanase was found to be highly thermostable at 50 and 60°C, retaining 82% and 50% of its original activity, respectively, after 60h. High xylan conversions (92%) were obtained with oat-spelt xylan hydrolysis. Higher glucan and xylan conversions were obtained on AFEX-treated corn stover with an enzyme cocktail containing WSUCF1 endo-xylanase (71% and 47%) as compared to enzyme cocktail containing commercial fungal endo-xylanase (64% and 41%). High specific activity, active at high pH's, wide substrate specificity, and higher hydrolytic activity on recalcitrant lignocellulose, make this endo-xylanase a suitable candidate for biofuel and bioprocess industries.

Keywords: AFEX-treated corn stover; Biofuels; Endo-xylanase; Thermostable.

PubMed Disclaimer

Publication types

LinkOut - more resources