Predicting patients with high risk of becoming high-cost healthcare users in Ontario (Canada)
- PMID: 24726075
- PMCID: PMC3999564
Predicting patients with high risk of becoming high-cost healthcare users in Ontario (Canada)
Abstract
Literature and original analysis of healthcare costs have shown that a small proportion of patients consume the majority of healthcare resources. A proactive approach is to target interventions towards those patients who are at risk of becoming high-cost users (HCUs). This approach requires identifying high-risk patients accurately before substantial avoidable costs have been incurred and health status has deteriorated further. We developed a predictive model to identify patients at risk of becoming HCUs in Ontario. HCUs were defined as the top 5% of patients incurring the highest costs. Information was collected on various demographic and utilization characteristics. The modelling technique used was logistic regression. If the top 5% of patients at risk of becoming HCUs are followed, the sensitivity is 42.2% and specificity is 97%. Alternatives for implementation of the model include collaboration between different levels of healthcare services for personalized healthcare interventions and interventions addressing needs of patient cohorts with high-cost conditions.
La littérature et l'analyse des coûts des services de santé démontrent qu'une petite portion de patients mobilise la majorité des ressources des services de santé. Une démarche proactive consiste à privilégier les interventions visant des patients qui présentent des risques de devenir des utilisateurs très coûteux (UTC). Cette démarche demande un recensement précis des patients à haut risque avant que des coûts substantiels ne soient engagés et que leur état de santé ne se soit détérioré davantage. Nous avons mis au point un modèle de prévision pour recenser les patients susceptibles de devenir des UTC en Ontario. Les UTC correspondent aux premiers 5 % d'utilisateurs qui génèrent les coûts les plus élevés. L'information a été recueillie selon diverses caractéristiques démographiques et modes d'utilisation. La régression logistique a été employée comme technique de modélisation. Si on effectue le suivi des premiers 5 % de patients à risque de devenir des UTC, le résultat de la sensibilité est de 42,2 % et celui de la spécificité s'élève à 97 %. Les choix pour l'application du modèle comprennent la collaboration entre divers niveaux de services de santé pour offrir des interventions personnalisées, ou encore la mise en place d'interventions qui répondent aux besoins de groupes de patients présentant des états de santé dont les coûts sont élevés.
Copyright © 2014 Longwoods Publishing.
Figures
Similar articles
-
Incremental healthcare utilisation and costs among new senior high-cost users in Ontario, Canada: a retrospective matched cohort study.BMJ Open. 2019 Oct 28;9(10):e028637. doi: 10.1136/bmjopen-2018-028637. BMJ Open. 2019. PMID: 31662356 Free PMC article.
-
Looking Beyond Income and Education: Socioeconomic Status Gradients Among Future High-Cost Users of Health Care.Am J Prev Med. 2015 Aug;49(2):161-71. doi: 10.1016/j.amepre.2015.02.018. Epub 2015 May 8. Am J Prev Med. 2015. PMID: 25960393
-
High-cost users of Ontario's healthcare services.Healthc Policy. 2013 Aug;9(1):44-51. Healthc Policy. 2013. PMID: 23968673 Free PMC article.
-
Senior high-cost healthcare users' resource utilization and outcomes: a protocol of a retrospective matched cohort study in Canada.BMJ Open. 2017 Dec 26;7(12):e018488. doi: 10.1136/bmjopen-2017-018488. BMJ Open. 2017. PMID: 29282266 Free PMC article.
-
Supervised Learning Methods for Predicting Healthcare Costs: Systematic Literature Review and Empirical Evaluation.AMIA Annu Symp Proc. 2018 Apr 16;2017:1312-1321. eCollection 2017. AMIA Annu Symp Proc. 2018. PMID: 29854200 Free PMC article.
Cited by
-
Identifying factors associated with high use of acute care in Canada: protocol of a population-based retrospective cohort study.BMJ Open. 2020 Oct 15;10(10):e038008. doi: 10.1136/bmjopen-2020-038008. BMJ Open. 2020. PMID: 33060083 Free PMC article.
-
Machine-learning-based prediction models for high-need high-cost patients using nationwide clinical and claims data.NPJ Digit Med. 2020 Nov 11;3(1):148. doi: 10.1038/s41746-020-00354-8. NPJ Digit Med. 2020. PMID: 33299137 Free PMC article.
-
The application of machine learning to predict high-cost patients: A performance-comparison of different models using healthcare claims data.PLoS One. 2023 Jan 18;18(1):e0279540. doi: 10.1371/journal.pone.0279540. eCollection 2023. PLoS One. 2023. PMID: 36652450 Free PMC article.
-
Préparer les résidents en médecine familiale à la révolution de l’information: Perles, potentiel, promesses et pièges.Can Fam Physician. 2019 Jun;65(6):e240-e243. Can Fam Physician. 2019. PMID: 31189636 Free PMC article. French. No abstract available.
-
Characterization of high healthcare utilizer groups using administrative data from an electronic medical record database.BMC Health Serv Res. 2019 Jul 5;19(1):452. doi: 10.1186/s12913-019-4239-2. BMC Health Serv Res. 2019. PMID: 31277649 Free PMC article.
References
-
- Berk M.L., Monheit A.C. 2001. “The Concentration of Health Care Expenditures, Revisited.” Health Affairs 20(2): 9–18 - PubMed
-
- Billings J., Dixon J., Mijanovich T., Wennberg D. 2006. “Case Finding for Patients at Risk of Readmission to Hospital: Development of Algorithm to Identify High-Risk Patients.” British Medical Journal 333(7563): 327. 10.1136/bmj.38870.657917.AE. - PMC - PubMed
-
- Calver J., Brameld K.J., Preen D.B., Alexia S.J., Boldy D.P., McCaul K.A. 2006. “High-Cost Users of Hospital Beds in Western Australia: A Population-Based Record Linkage Study.” Medical Journal of Australia 184: 393–97 - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources