Recombineering: genetic engineering in bacteria using homologous recombination
- PMID: 24733238
- DOI: 10.1002/0471142727.mb0116s106
Recombineering: genetic engineering in bacteria using homologous recombination
Abstract
The bacterial chromosome and bacterial plasmids can be engineered in vivo by homologous recombination using PCR products and synthetic oligonucleotides as substrates. This is possible because bacteriophage-encoded recombination proteins efficiently recombine sequences with homologies as short as 35 to 50 bases. Recombineering allows DNA sequences to be inserted or deleted without regard to location of restriction sites. This unit first describes preparation of electrocompetent cells expressing the recombineering functions and their transformation with dsDNA or ssDNA. It then presents support protocols that describe several two-step selection/counter-selection methods of making genetic alterations without leaving any unwanted changes in the targeted DNA, and a method for retrieving onto a plasmid a genetic marker (cloning by retrieval) from the Escherichia coli chromosome or a co-electroporated DNA fragment. Additional protocols describe methods to screen for unselected mutations, removal of the defective prophage from recombineering strains, and other useful techniques.
Keywords: Rac prophage; RecET; bacteria; bacteriophage λ; homologous recombination; recombineering; selection/counter-selection; λ Red system.
Copyright © 2014 John Wiley & Sons, Inc.
Similar articles
-
Recombineering: genetic engineering in bacteria using homologous recombination.Curr Protoc Mol Biol. 2007 Apr;Chapter 1:Unit 1.16. doi: 10.1002/0471142727.mb0116s78. Curr Protoc Mol Biol. 2007. PMID: 18265390 Review.
-
Recombineering: Genetic Engineering in Escherichia coli Using Homologous Recombination.Curr Protoc. 2023 Feb;3(2):e656. doi: 10.1002/cpz1.656. Curr Protoc. 2023. PMID: 36779782 Free PMC article.
-
Recombineering in Non-Model Bacteria.Curr Protoc. 2022 Dec;2(12):e605. doi: 10.1002/cpz1.605. Curr Protoc. 2022. PMID: 36546891 Free PMC article.
-
Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.mBio. 2016 Sep 13;7(5):e01443-16. doi: 10.1128/mBio.01443-16. mBio. 2016. PMID: 27624131 Free PMC article.
-
Genetic engineering using homologous recombination.Annu Rev Genet. 2002;36:361-88. doi: 10.1146/annurev.genet.36.061102.093104. Epub 2002 Jun 11. Annu Rev Genet. 2002. PMID: 12429697 Review.
Cited by
-
Low levels of tetracyclines select for a mutation that prevents the evolution of high-level resistance to tigecycline.PLoS Biol. 2022 Sep 28;20(9):e3001808. doi: 10.1371/journal.pbio.3001808. eCollection 2022 Sep. PLoS Biol. 2022. PMID: 36170241 Free PMC article.
-
CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in N-Acetylglucosamine Production.Appl Environ Microbiol. 2019 Oct 16;85(21):e01367-19. doi: 10.1128/AEM.01367-19. Print 2019 Nov 1. Appl Environ Microbiol. 2019. PMID: 31444197 Free PMC article.
-
Bioproduction of Linalool From Paper Mill Waste.Front Bioeng Biotechnol. 2022 May 30;10:892896. doi: 10.3389/fbioe.2022.892896. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35711639 Free PMC article.
-
Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness.PLoS Genet. 2021 Nov 12;17(11):e1009886. doi: 10.1371/journal.pgen.1009886. eCollection 2021 Nov. PLoS Genet. 2021. PMID: 34767550 Free PMC article.
-
Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes.Front Mol Biosci. 2020 May 27;7:98. doi: 10.3389/fmolb.2020.00098. eCollection 2020. Front Mol Biosci. 2020. PMID: 32528975 Free PMC article.
References
Literature Cited
-
- Adhya, S. and Gottesman, M. 1978. Control of transcription termination. Ann. Rev. Biochem. 47:967-996.
-
- Alper, M.D. and Ames, B.N. 1975. Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. J. Bacteriol. 121:259-266.
-
- Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. , and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
-
- Arber, W. , Enquist, L. , Hohn, B. , Murray, N.E. , and Murray, K. 1983. Experimental methods for use with lambda. In Lambda II ( R. Hendrix , J. Roberts , F. Stahl , and R. Weisberg , eds.) pp. 433-471. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
- Bird, A.W. , Erler, A. , Fu, J. , Hériché, J-K. , Maresca, M. , Zhang, Y. , Hyman, A.A. , and Stewart. A.F. 2011. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes. Nat. Methods 9:103-109.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous