X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking
- PMID: 24733887
- PMCID: PMC4035913
- DOI: 10.1073/pnas.1321406111
X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking
Abstract
Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.
Keywords: X-ray crystallography; membrane protein; water channel protein.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Molecular Characterization of an Aquaporin-2 Mutation Causing Nephrogenic Diabetes Insipidus.Front Endocrinol (Lausanne). 2021 Aug 27;12:665145. doi: 10.3389/fendo.2021.665145. eCollection 2021. Front Endocrinol (Lausanne). 2021. PMID: 34512542 Free PMC article.
-
Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus.J Am Soc Nephrol. 2005 Oct;16(10):2872-80. doi: 10.1681/ASN.2005010104. Epub 2005 Aug 24. J Am Soc Nephrol. 2005. PMID: 16120822
-
Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype.Am J Physiol Renal Physiol. 2009 Aug;297(2):F489-98. doi: 10.1152/ajprenal.90589.2008. Epub 2009 May 20. Am J Physiol Renal Physiol. 2009. PMID: 19458121 Free PMC article.
-
Regulation of aquaporin-2 trafficking.Handb Exp Pharmacol. 2009;(190):133-57. doi: 10.1007/978-3-540-79885-9_6. Handb Exp Pharmacol. 2009. PMID: 19096775 Review.
-
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions.Cells. 2020 Sep 26;9(10):2172. doi: 10.3390/cells9102172. Cells. 2020. PMID: 32993088 Free PMC article. Review.
Cited by
-
Exploring the diversity of AVPR2 in Primates and its evolutionary implications.Genet Mol Biol. 2023 Nov 3;46(3):e20230045. doi: 10.1590/1678-4685-GMB-2023-0045. eCollection 2023. Genet Mol Biol. 2023. PMID: 37930141 Free PMC article.
-
Plant and Mammal Aquaporins: Same but Different.Int J Mol Sci. 2018 Feb 8;19(2):521. doi: 10.3390/ijms19020521. Int J Mol Sci. 2018. PMID: 29419811 Free PMC article. Review.
-
On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies.IUCrJ. 2019 Jun 19;6(Pt 4):714-728. doi: 10.1107/S2052252519007395. eCollection 2019 Jul 1. IUCrJ. 2019. PMID: 31316815 Free PMC article.
-
Molecular mechanism of anion permeation through aquaporin 6.Biophys J. 2024 Aug 20;123(16):2496-2505. doi: 10.1016/j.bpj.2024.06.013. Epub 2024 Jun 17. Biophys J. 2024. PMID: 38894539 Free PMC article.
-
Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases.Front Mol Biosci. 2022 Feb 3;9:845237. doi: 10.3389/fmolb.2022.845237. eCollection 2022. Front Mol Biosci. 2022. PMID: 35187089 Free PMC article. Review.
References
-
- Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17(4):471–503. - PubMed
-
- van Os CH, Deen PM, Dempster JA. Aquaporins: Water selective channels in biological membranes. Molecular structure and tissue distribution. Biochim Biophys Acta. 1994;1197(3):291–309. - PubMed
-
- Noda Y, Sohara E, Ohta E, Sasaki S. Aquaporins in kidney pathophysiology. Nat Rev Nephrol. 2010;6(3):168–178. - PubMed
-
- Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem. 1997;272(23):14800–14804. - PubMed
-
- Katsura T, Gustafson CE, Ausiello DA, Brown D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol. 1997;272(6 Pt 2):F817–F822. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous