Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 May;63(1-2):1-14.
doi: 10.1016/0303-7207(89)90076-2.

Insulin-like growth factors and neonatal cardiomyocyte development: ventricular gene expression and membrane receptor variations in normotensive and hypertensive rats

Affiliations
Comparative Study

Insulin-like growth factors and neonatal cardiomyocyte development: ventricular gene expression and membrane receptor variations in normotensive and hypertensive rats

G L Engelmann et al. Mol Cell Endocrinol. 1989 May.

Abstract

Defined factors regulating or influencing mammalian ventricular myocyte (cardiomyocyte) development are not known at this time. During early neonatal ventricular growth, cardiomyocytes begin a 'transition phase' of development toward cellular maturation (hypertrophy) that entails terminal proliferation and cellular binucleation. Insulin-like growth factor-I and -II (IGFs) are believed to play a major role in mammalian postnatal and fetal growth, possibly functioning in local environments which facilitate autocrine or paracrine tissue growth characteristics. Therefore, we examined the expression of the IGF genes and their corresponding membrane receptors in ventricles of normotensive and spontaneously hypertensive (SHR) rat pups during the first 7-14 days of age. We have determined: (1) by receptor crosslinking that neonatal ventricular membranes possess type 1 and type 2 IGF receptors; (2) by receptor binding analysis that type 1 IGF receptor concentration is elevated between days 1-7 in the SHR and shows an age-related decline in concentration and an increase in affinity in both strains; (3) by Northern blot analysis that neonatal rat ventricular tissue expresses primarily IGF-II RNA transcripts of 3.6, 2.3 and 1.7 kilobases (kb) in size, with low levels of IGF-I transcripts detected; (4) by slot-blot hybridization that SHR ventricles contain higher levels of IGF-II transcripts at 3 days of age; and (5) localized the IGF transcripts to ventricular myocytes by tissue in situ hybridization. These observations support a role for cardiomyocyte-produced IGFs that may be locally produced and act in an autocrine or paracrine fashion to modulate cardiomyocyte growth and maturation in the developing rat heart. Because both IGF receptor and IGF RNA transcript parameters differed in SHR hearts, genetically predisposed to hypertrophy, a potentially important biochemical alteration may be associated with the fetal/neonatal growth abnormalities of the developing heart in this rat strain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources