Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 16;9(4):e90617.
doi: 10.1371/journal.pone.0090617. eCollection 2014.

Efficacy of N-acetyl cysteine in traumatic brain injury

Affiliations

Efficacy of N-acetyl cysteine in traumatic brain injury

Katharine Eakin et al. PLoS One. .

Abstract

In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. MWM performance.
Post injury administration of NAC significantly improves MWM performance. MWM performance as measured by latency to reach the goal platform was compared between groups: TBI (n = 9), TBI-NAC (n = 8), and Sham (n = 9). Both Sham and TBI-NAC groups have significantly shorter latencies to reach the goal platform as compared to the TBI group. Additionally, treatment with NAC after TBI improved performance in the MWM that reached sham levels. Data are presented as the mean ± SEM. *p<.05, ***p≤.001, sham relative to TBI. † p<.05 TBI-NAC relative to TBI.
Figure 2
Figure 2. MWM platform crossing.
Number of times animals crossed within a 7.5-way ANOVA showed significant differences between groups. Fisher's LSD post hoc showed that sham and TBI-NAC had significantly better retention of the platform location as compared to TBI alone. Data are presented as the mean ± SEM. Brackets indicate comparisons between groups. *p<0.05, **p<0.01.
Figure 3
Figure 3. Novel Object Recognition.
Preference index for the novel object in the Novel Object Recognition task across post-injury time points. Separate ANOVAs were used to compare the preference index for the novel object during the recall phase of the task. A) Weight drop injury resulted in significant object memory impairment on post-injury day (PID) 7 (A) and PID 30 (B) in injured vehicle-treated mice as compared to all other treatment groups. At both post-injury time points, post-TBI treatment with N-Acetylcysteine + topiramate (Drug) was protective against injury-induced deficits in recognition memory. Animals in the TBI-Drug group performed similarly to Sham-Vehicle and Sham-Drug groups. Values represent the mean ± SEM. ** p<0.01, *** p<0.001 compared to sham vehicle.
Figure 4
Figure 4. Y maze preference index.
Preference index for the Y maze spatial memory task on post-injury day (PID) 7 and 30. Separate ANOVAs were used to compare the preference index for the novel arm of the Y maze during the recall trial (i.e., 2nd trial). (A) Weight drop injury resulted in significant object memory impairment in TBI-Vehicle animals relative to the other three treatment groups on post-injury day (PID) 7. (B) On PID 30, mice in the TBI-Vehicle group performed significantly worse as compared to the Sham-Vehicle and TBI-Drug groups (p<0.05). The Sham-Drug group did not differ significantly from any of the other groups. N-Acetylcysteine + topiramate (Drug) was protective against injury-induced deficits in performance in spatial memory-dependent tasks. Animals in the TBI-Drug group performed similarly to Sham-Vehicle. Values represent the mean ± SEM. * p<0.05 compared to sham vehicle.
Figure 5
Figure 5. Proposed mechanism of action of N-Acetylcysteine.

References

    1. Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer BJ (2013) Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-Acetyl Cysteine: A double-blind, placebo controlled study. PloS One 8 ((1)): e54163 10.1371/journal.pone.0054163 - DOI - PMC - PubMed
    1. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.
    1. Comper P, Bisschop SM, Carnide N, Tricco A (2005) A systematic review of treatments for mild traumatic brain injury. Brain Inj 19 ((11)): 863–80. - PubMed
    1. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL (2003) Incidence of traumatic brain injury in the United States. J Head Trauma Rehabil 2006 Nov–Dec;21 ((6)): 544–8. - PubMed
    1. Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int Apr;48 ((5)): 394–403. - PubMed

Publication types