Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 16;82(2):279-93.
doi: 10.1016/j.neuron.2014.03.030.

Extrasynaptic NMDA receptor involvement in central nervous system disorders

Affiliations
Free article
Review

Extrasynaptic NMDA receptor involvement in central nervous system disorders

Matthew P Parsons et al. Neuron. .
Free article

Abstract

NMDA receptor (NMDAR)-induced excitotoxicity is thought to contribute to the cell death associated with certain neurodegenerative diseases, stroke, epilepsy, and traumatic brain injury. Targeting NMDARs therapeutically is complicated by the fact that cell signaling downstream of their activation can promote cell survival and plasticity as well as excitotoxicity. However, research over the past decade has suggested that overactivation of NMDARs located outside of the synapse plays a major role in NMDAR toxicity, whereas physiological activation of those inside the synapse can contribute to cell survival, raising the possibility of therapeutic intervention based on NMDAR subcellular localization. Here, we review the evidence both supporting and refuting this localization hypothesis of NMDAR function and discuss the role of NMDAR localization in disorders of the nervous system. Preventing excessive extrasynaptic NMDAR activation may provide therapeutic benefit, particularly in Alzheimer disease and Huntington disease.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources