Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2014 May;124(5):1896-8.
doi: 10.1172/JCI75801. Epub 2014 Apr 17.

Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy

Comment

Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy

Ciro Indolfi et al. J Clin Invest. 2014 May.

Abstract

Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Dynamics of fibroblast-mediated exosome secretion and pivotal miRs involved in cardiac hypertrophy.
Following cardiac stress, fibroblasts secrete miR-enriched exosomes, which are enriched with miR-21*. Cardiomyocytes take up the fibroblast-secreted exosomes, which release miR-21*. Targeted knockdown of SORBS2 and PDLIM5 by miR-21* promotes hypertrophy. Many miRs that regulate hypertrophy have been identified and can be considered as tissue specific, circulating, and secreted. Among the latter, only miR-21* has been detected in pericardial fluid in the context of cardiac hypertrophy (21).

Comment on

References

    1. Kannel WB, Gordon T, Castelli WP, Margolis JR. Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease. The Framingham study. Ann Intern Med. 1970;72(6):813–822. doi: 10.7326/0003-4819-72-6-813. - DOI - PubMed
    1. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32(5):1454–1459. doi: 10.1016/S0735-1097(98)00407-0. - DOI - PubMed
    1. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415(6868):206–212. doi: 10.1038/415206a. - DOI - PubMed
    1. Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013;14(1):38–48. doi: 10.1038/nrm3495. - DOI - PMC - PubMed
    1. Indolfi C, et al. Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation. 2002;106(16):2118–2124. doi: 10.1161/01.CIR.0000034047.70205.97. - DOI - PubMed