Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug 7;983(2):135-41.
doi: 10.1016/0005-2736(89)90226-5.

Mechanism of membrane damage induced by the amphipathic peptides gramicidin S and melittin

Affiliations

Mechanism of membrane damage induced by the amphipathic peptides gramicidin S and melittin

T Katsu et al. Biochim Biophys Acta. .

Abstract

The action of gramicidin S and melittin on human erythrocytes, Staphylococcus aureus and Escherichia coli was studied as an extension of the previous study (Katsu, T., Ninomiya, C., Kuroko, M., Kobayashi, H., Hirota, T. and Fujita, Y. (1988) Biochim. Biophys. Acta 939, 57-63). These amphipathic peptides stimulated the release of membrane phospholipids outside cells in a concentration range causing permeability change. The shape change of erythrocytes from normal discoid to spiculate form was observed just prior to the release of membrane components. We have proposed the following action mechanism of gramicidin S and melittin. The peptide molecules were predominantly accumulated in the outer half of the bilayer, deforming the erythrocyte cell into crenature. A large accumulation made the membrane structure unstable, resulting in the release of membrane fragments and the simultaneous enhancement of permeability. The action mechanism of these peptides was compared with that of simple surfactants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources