Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 17;9(4):e95057.
doi: 10.1371/journal.pone.0095057. eCollection 2014.

A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae

Affiliations

A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae

Charles Runckel et al. PLoS One. .

Abstract

Since 2006, honey bee colonies in North America and Europe have experienced increased annual mortality. These losses correlate with increased pathogen incidence and abundance, though no single etiologic agent has been identified. Crithidia mellificae is a unicellular eukaryotic honey bee parasite that has been associated with colony losses in the USA and Belgium. C. mellificae is a member of the family Trypanosomatidae, which primarily includes other insect-infecting species (e.g., the bumble bee pathogen Crithidia bombi), as well as species that infect both invertebrate and vertebrate hosts including human pathogens (e.g.,Trypanosoma cruzi, T. brucei, and Leishmania spp.). To better characterize C. mellificae, we sequenced the genome and transcriptome of strain SF, which was isolated and cultured in 2010. The 32 megabase draft genome, presented herein, shares a high degree of conservation with the related species Leishmania major. We estimate that C. mellificae encodes over 8,300 genes, the majority of which are orthologs of genes encoded by L. major and other Leishmania or Trypanosoma species. Genes unique to C. mellificae, including those of possible bacterial origin, were annotated based on function and include genes putatively involved in carbohydrate metabolism. This draft genome will facilitate additional investigations of the impact of C. mellificae infection on honey bee health and provide insight into the evolution of this unique family.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: This study was partly funded by a Honey Bee Biology Postdoctoral Fellowship awarded through UC-Davis, but co-sponsored by Häagen Dazs. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Crithidia mellificae, a trypanosomatid parasite of honey bees.
(A) Majority consensus tree of select members of the Trypanosomatidae derived from Bayesian analysis , (i.e., MrBayes v3.1.2 [57]) of a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) nucleotide alignment (799 nt). T. cruzi was selected as the outgroup based on results from previous phylogenetic analyses , , –. Numbers on branches are Bayesian posterior probabilities (0–1); scale bar corresponds to the proportion of nucleotide change. The genus and species names are consistent with the GenBank accession numbers in the figure; we note that Crithidia deanei was renamed Angomonas deanei. (B) Composite of light and fluorescent microscope images of C. mellificae illustrate the flagellum, kinetoplast (smaller, brighter DAPI stained organelle; yellow arrow) and nucleus (white arrow) of the crithidial stage and (C) additional life-stages in culture.
Figure 2
Figure 2. Assembly and annotation of C. mellificae contig 175.
(A) Read coverage of the gDNA library used for assembly. A gene duplication of the GAPDH gene is highlighted on the right. (B) RNA-seq coverage aligned to the contig. (C) Genes predicted by the Maker pipeline in C. mellificae with assigned putative functions. The homologous and syntenic region of L. major is shown below, with nucleotide identity of the C. mellificae genes to L. major color-coded by nt identify (green ≥70%, yellow ≥60%, red <60%). A putative bacterial xenolog of a sulfate transporter, sulfate permease JQ247792, is noted (sixth from the right).
Figure 3
Figure 3. The gene catalogues of Leishmania major and Crithidia mellificae are compared after ortholog analysis by INPARANOID .
*Truncated genes at contig ends were included in this analysis for a total of 9,971 ORFs. Approximately 17% of these ORFs are incomplete ends of the same presumed gene, resulting in ∼8,300 actual genes (see Results).
Figure 4
Figure 4. Urea and polyamine synthesis in trypanosomatids.
The putative origin of genes involved in urea and polyamine synthesis is indicated by color; eukaryotic (blue) or bacterial (red) origin. For C. mellificae, genes conserved from L. major are displayed on the left column and unique genes on the right; the compounds are numbered as follows: 1. aspartic acid, 2. citrulline, 3. argininosuccinate, 4. arginine, 5. ornithine, 6. putrescine.

Similar articles

Cited by

References

    1. Vanengelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, et al. (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4: e6481 10.1371/journal.pone.0006481 - DOI - PMC - PubMed
    1. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287 10.1126/science.1146498 - DOI - PubMed
    1. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19: 614–620 10.1016/j.tim.2011.09.003 - DOI - PubMed
    1. Langridge D, McGhee R (1967) Crithidia mellificae nsp an acidophilic trypanosomatide of honey bee Apis mellifera. J Protozool 14: 485–487. - PubMed
    1. Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, et al. (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, nosema, and crithidia. PLoS ONE 6: e20656 10.1371/journal.pone.0020656 - DOI - PMC - PubMed

Publication types

LinkOut - more resources