Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 22;118(20):3552-63.
doi: 10.1021/jp501205d. Epub 2014 May 9.

Rate constants and kinetic isotope effects for methoxy radical reacting with NO2 and O2

Affiliations

Rate constants and kinetic isotope effects for methoxy radical reacting with NO2 and O2

Jiajue Chai et al. J Phys Chem A. .

Abstract

Relative rate studies were carried out to determine the temperature dependent rate constant ratio k1/k2a: CH3O· + O2 → HCHO + HO2· and CH3O· + NO2 (+M) → CH3ONO2 (+M) over the temperature range 250–333 K in an environmental chamber at 700 Torr using Fourier transform infrared detection. Absolute rate constants k2 were determined using laser flash photolysis/laser-induced fluorescence under the same conditions. The analogous experiments were carried out for the reactions of the perdeuterated methoxy radical (CD3O·). Absolute rate constants k2 were in excellent agreement with the recommendations of the JPL Data Evaluation panel. The combined data (i.e., k1/k2 and k2) allow the determination of k1 as 1.3(–0.5)(+0.9) × 10(–14) exp[−(663 ± 144)/T] cm(3) s(–1), corresponding to 1.4 × 10(–15) cm(3) s(–1) at 298 K. The rate constant at 298 K is in excellent agreement with previous work, but the observed temperature dependence is less than was previously reported. The deuterium isotope effect, kH/kD, can be expressed in the Arrhenius form as k1/k3 = (1.7(–0.4)(+0.5)) exp((306 ± 70)/T). The deuterium isotope effect does not appear to be greatly influenced by tunneling, which is consistent with a previous theoretical work by Hu and Dibble. (Hu, H.; Dibble, T. S., J. Phys. Chem. A 2013, 117, 14230–14242.)

PubMed Disclaimer

LinkOut - more resources