Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989;28(1):211-7.
doi: 10.1016/0306-4522(89)90245-5.

Evidence for an involvement of substance P, but not cholecystokinin-like peptides, in hexamethonium-resistant intestinal peristalsis

Affiliations

Evidence for an involvement of substance P, but not cholecystokinin-like peptides, in hexamethonium-resistant intestinal peristalsis

L Barthó et al. Neuroscience. 1989.

Abstract

It has previously been found that, in the presence of naloxone, the ganglionic blocking drug hexamethonium fails to completely block peristaltic motility in the isolated ileum of the guinea-pig. This hexamethonium-resistant peristaltic activity is coordinated by enteric nerves since it is abolished by tetrodotoxin. In the present study the neurotransmitter circuitry of this type of peristalsis was studied by means of specific antagonists. Atropine totally suppressed hexamethonium-resistant peristalsis. This type of peristalsis was also strongly inhibited by the tachykinin antagonist, spantide, if a concentration sufficient to antagonize neuronally located substance P receptors was employed. In contrast, the cholecystokinin antagonist, lorglumide, caused only a slight inhibition of hexamethonium-resistant peristalsis. Both substance P and the cholecystokinin-related peptide, ceruletide, potently stimulated the hexamethonium-resistant type of peristaltic activity. These data indicate that, after blockade of nicotinic acetylcholine receptors, tachykinins mediate neuroneuronal coordination of peristalsis whereas acetylcholine acting via muscarinic receptors may be primarily responsible for neuromuscular transmission. Cholecystokinin-like peptides appear to play a modulator rather than a mediator role in hexamethonium-resistant peristalsis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources