Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Sep 28:190:515-30.
doi: 10.1016/j.jconrel.2014.04.021. Epub 2014 Apr 18.

Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases

Affiliations
Review

Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases

Amit Singh et al. J Control Release. .

Abstract

Inflammation is an immune response that marks several pathophysiological conditions in our body. Though adaptive immune cells play a major role in the progression of the disease, components of innate immune system, mainly monocytes and macrophages play the central role in onset of inflammation. Tissue-associated macrophages are widely distributed in the body showing tremendous anatomical and functional diversity and are actively involved in maintaining the homeostasis. They exhibit different phenotypes depending on their residing tissue microenvironment and the two major functional phenotypes are classically activated M1 phenotype showing pro-inflammatory characteristics and alternatively activated M2 phenotype demonstrating anti-inflammatory nature. Several cytokines, chemokines and other regulatory mediators delicately govern the balance of the two phenotypes in a tissue. This balance, however, is subverted during infection, injury or autoimmune response leading to increased population of M1 phenotype and subsequent chronic inflammatory disease states. This review underlines the role of macrophages in inflammatory diseases with an insight into potential molecular targets for nucleic acid therapy. Finally, some recent nanotechnology-based approaches to devise macrophage-specific targeted therapy have been highlighted.

Keywords: Inflammatory diseases; Macrophage-targeting; Nanoparticles; Nucleic acid therapy.

PubMed Disclaimer

LinkOut - more resources