Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr;70(5):959-1006.
doi: 10.1007/s00285-014-0783-x. Epub 2014 Apr 20.

Competition between phytoplankton and bacteria: exclusion and coexistence

Affiliations

Competition between phytoplankton and bacteria: exclusion and coexistence

Frédéric Grognard et al. J Math Biol. 2015 Apr.

Abstract

Resource-based competition between microorganisms species in continuous culture has been studied extensively both experimentally and theoretically, mostly for bacteria through Monod and Contois "constant yield" models, or for phytoplankton through the Droop "variable yield" models. For homogeneous populations of N bacterial species (Monod) or N phytoplanktonic species (Droop), with one limiting substrate and under constant controls, the theoretical studies indicated that competitive exclusion occurs: only one species wins the competition and displaces all the others (Armstrong and McGehee in Am Nat 115:151, 1980; Hsu and Hsu in SIAM J Appl Math 68:1600-1617, 2008). The winning species expected from theory is the one with the lowest "substrate subsistence concentration" s([star]), such that its corresponding equilibrium growth rate is equal to the dilution rate D. This theoretical result was validated experimentally with phytoplankton (Tilman and Sterner in Oecologia 61(2):197-200, 1984) and bacteria (Hansen and Hubell in Science 207(4438):1491-1493, 1980), and observed in a lake with microalgae (Tilman in Ecology 58(22):338-348, 1977). On the contrary for aggregating bacterial species described by a Contois model, theory predicts coexistence between several species (Grognard et al. in Discrete Contin Dyn Syst Ser B 8(1):73-93, 2007). In this paper we present a generalization of these results by studying a competition between three different types of microorganisms: planktonic (or free) bacteria (represented by a generalized Monod model), aggregating bacteria (represented by a Contois model) and free phytoplankton (represented by a Droop model). We prove that the outcome of the competition is a coexistence between several aggregating bacterial species with a free species of bacteria or phytoplankton, all the other free species being washed out. This demonstration is based mainly on the study of the substrate concentration's evolution caused by competition; it converges towards the lowest subsistence concentration s([star]), leading to three different types of competition outcomes: (1) the best free bacteria or phytoplankton competitor excludes all other species; (2) only some aggregating bacterial species coexist in the chemostat; (3) A coexistence between the single best free species, with one or several aggregating species.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Appl Microbiol Biotechnol. 2004 Nov;65(6):635-48 - PubMed
    1. J Theor Biol. 1975 Mar;50(1):185-201 - PubMed
    1. J Biosci Bioeng. 2006 Feb;101(2):87-96 - PubMed
    1. Science. 1959 Aug 28;130(3374):477-82 - PubMed
    1. Theor Popul Biol. 2000 Jun;57(4):325-37 - PubMed

Publication types

LinkOut - more resources