Caveolin-3 is Up-Regulated in the Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training in Rats
- PMID: 24748846
- PMCID: PMC3979006
Caveolin-3 is Up-Regulated in the Physiological Left Ventricular Hypertrophy Induced by Voluntary Exercise Training in Rats
Abstract
Various substances have been introduced in relation with cardiac hypertrophy almost always with controversy in their roles in signal transduction. Those controversies may attribute to the diversity of cardiac hypertrophy. We previously showed that calcineurin was activated in physiological left ventricular hypertrophy (LVH) induced by voluntary exercise training, but not in decompensated pressure-overload LVH. In the current study, we advanced our search for the differences between the voluntary exercise-induced LVH and the pressure-overload LVH into several other hypertrophy-related substances including caveolin. Wistar rats were assigned to one of the following three groups: 10 weeks of voluntary exercise (EX), sedentary regimen (SED), and 4 weeks of ascending aortic constriction (AC). The EX rats voluntarily ran 1.6 ± 1.1 km/day in the specially manufactured cages resulting in LVH (24 % increase in left ventricular weight per body weight ratio). Myocardial tissue homogenate of the EX rats revealed different characteristics in signal transduction of hypertrophy from that of the AC. The EX rats had normal sarcoplasmic reticulum (SR) Ca(2+)ATPase mRNA level and normal myosin heavy chain isozyme pattern assessed by RNA protection assay, while AC rats had decreased SR Ca(2+)ATPase mRNA level and increased beta myosin heavy chain mRNA level. Myocardial caveolin-3 protein levels assessed by Western blotting increased in the EX rats but decreased in the AC rats. The voluntary exercise-induced LVH differed in signal transduction from the decompensated pressure-overload LVH. Caveolin-3 was induced in the voluntary exercise-induced LVH, while it was decreased in the decompensated pressure-overload LVH.
Kardiyak hipertrofi ile iliŞkili olarak çeŞitli maddeler uyarı iletimindeki görevleri ile çeliŞkili olmasına rağmen daima gözönüne alınmıŞlardır. Bu çeliŞkiler kardiyak hiprertofinin etyolojisindeki büyük farklılıklardan dolayı ortaya çıkabilir. Daha önce “calcineurin” in istemli düzenli egzersiz ile tetiklenen fizyolojik sol ventrikül hipertrofisinde (LVH) etkinleŞirken dekompanse aŞırı basınç yükselmesine bağlı LVH’de fark olmadığını göstermiŞtik. Bu çalıŞmada, araŞtırmamızı istemli egzersizin tetiklediği LVH ile aŞırı basınç yükselmesine bağlı LVH’de “caveolin” in de aralarında olduğu hipertrofiyle bağlantılı çeŞitli maddeler arasındaki farklılıkları belirlemek amacıyla geniŞlettik. Wistar sıçanlar aŞağıdaki üç guruba ayrıldı: 10 hafta istemli egzersiz (EX), sedentar uygulama (SED), ve 4 hafta boyunca yükselen aortun konstriksiyonu (AC). EX grubundak sıçanlar özel üretilmiŞ kafeslerde istemli olarak 1.6 ± 1.1 km·gün-1 koŞmaları sonucu LVH (sol ventrikül ağırlığının vücut ağırlığına oranında % 24 artıŞ) görüldü. EX sıçanların miyokardial doku homojenatında hipertrofide sinyal transdüksiyonu AC sıçanlarınkinden değiŞik özellikler gösterdi. EX sıçanlarında RNA koruma tayini yöntemi ile normal sarkoplazmik retikulum (SR) Ca2+ATPaz mRNA düzeyleri ve normal miyozin ağır zincir izoenzim paternleri vardı. AC sıçanlarda ise azalmıŞ SR Ca2+ATPaz mRNA ve artmıŞ beta miyozin ağır zincir mRNA düzeyleri görüldü. “Western blotting” yöntemi ile saptanan miyokard caveolin-3 protein düzeyleri EX sıçanlarda artmıŞ fakat AC sıçanlarda azalmıŞtı. Ýstemli egzersiz ile tetiklenen LVH’de sinyal transdüksiyonu dekompanse aŞırı basınç yükselmesine bağlı LVH’den farklıydı. Caveolin-3 istemli egzersiz ile tetiklenen LVH’de tetiklenirken, dekompanse aŞırı basınç yükselmesine bağlı LVH’de azalmıŞtı.
Keywords: Exercise; hypertrophy; signal transduction.
Figures


Similar articles
-
Calcineurin is activated in rat hearts with physiological left ventricular hypertrophy induced by voluntary exercise training.Circulation. 2000 May 9;101(18):2134-7. doi: 10.1161/01.cir.101.18.2134. Circulation. 2000. PMID: 10801751
-
Gender differences in molecular remodeling in pressure overload hypertrophy.J Am Coll Cardiol. 1999 Jul;34(1):264-73. doi: 10.1016/s0735-1097(99)00165-5. J Am Coll Cardiol. 1999. PMID: 10400020
-
Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats.Circulation. 2002 Apr 2;105(13):1602-8. doi: 10.1161/01.cir.0000012943.91101.d7. Circulation. 2002. PMID: 11927530
-
Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding.Circ Res. 1993 Jul;73(1):184-92. doi: 10.1161/01.res.73.1.184. Circ Res. 1993. PMID: 8508529
-
[Is secondary myocardial hypertrophy a physiological or pathological adaptive mechanism?].Z Kardiol. 1982 Aug;71(8):489-96. Z Kardiol. 1982. PMID: 6215776 Review. German.
Cited by
-
Effects of exercise training on pathological cardiac hypertrophy related gene expression and apoptosis.Eur J Appl Physiol. 2006 May;97(2):216-24. doi: 10.1007/s00421-006-0161-5. Epub 2006 Apr 1. Eur J Appl Physiol. 2006. PMID: 16583233
-
Voluntary physical activity suppresses adipocyte hypertrophy through the activation of cGMP mediated pathway in a fructose-induced metabolic syndrome model in rat.Eur J Nutr. 2025 Feb 15;64(2):91. doi: 10.1007/s00394-025-03613-0. Eur J Nutr. 2025. PMID: 39954126 Free PMC article.
-
Body weight influences musculoskeletal adaptation to long-term voluntary wheel running during aging in female mice.Aging (Albany NY). 2022 Nov 18;15(2):308-352. doi: 10.18632/aging.204390. Epub 2022 Nov 18. Aging (Albany NY). 2022. PMID: 36403149 Free PMC article.
References
-
- Aoyagi T., Yonekura K., Eto Y., Matsumoto A., Yokoyama I., Sugiura S., Momomura S., Hirata Y., Baker D.L., Periasamy M. (1999) The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene promoter activity is in response to severe left ventricular pressure-overload hypertrophy in rat hearts. Journal of Molecular and Cellular Cardiology. 31: 919-926 - PubMed
-
- Barry J.M. (1986) Structural features of the athlete heart as defined by echocardiography. Journal of American College of Cardiology. 7: 190-203 - PubMed
-
- Bossuyt J., Taylor B.E., James-Kracke M., Hale C.C. (2002) Evidence for cardiac sodium-calcium exchanger association with caveolin-3. FEBS Letter 511: 113-117 - PubMed
-
- Caselli A., Taddei M.L., Manao G., Camici G., Ramponi G. (2001) Tyrosine-phosphorylated caveolin is a physiological substrate of the low M(r) protein-tyrosine phosphatase. Journal of Biological Chemistry. 276: 18849-18854 - PubMed
-
- Devereux R.B. (1995) Left ventricular geometry, pathophysiology, and prognosis. Journal of American College of Cardiology 25: 885-887 - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous