Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jun;23(12):2890-901.
doi: 10.1111/mec.12756. Epub 2014 May 25.

Drawing ecological inferences from coincident patterns of population- and community-level biodiversity

Affiliations
Review

Drawing ecological inferences from coincident patterns of population- and community-level biodiversity

Mark Vellend et al. Mol Ecol. 2014 Jun.

Abstract

Biodiversity is comprised of genetic and phenotypic variation among individual organisms, which might belong to the same species or to different species. Spatial patterns of biodiversity are of central interest in ecology and evolution for several reasons: to identify general patterns in nature (e.g. species-area relationships, latitudinal gradients), to inform conservation priorities (e.g. identifying hotspots, prioritizing management efforts) and to draw inferences about processes, historical or otherwise (e.g. adaptation, the centre of origin of particular clades). There are long traditions in ecology and evolutionary biology of examining spatial patterns of biodiversity among species (i.e. in multispecies communities) and within species, respectively, and there has been a recent surge of interest in studying these two types of pattern simultaneously. The idea is that examining both levels of diversity can materially advance the above-stated goals and perhaps lead to entirely novel lines of inquiry. Here, we review two broad categories of approach to merging studies of inter- and intraspecific variation: (i) the study of phenotypic trait variation along environmental gradients and (ii) the study of relationships between patterns of molecular genetic variation within species and patterns of distribution and diversity across species. For the latter, we report a new meta-analysis in which we find that correlations between species diversity and genetic diversity are generally positive and significantly stronger in studies with discrete sampling units (e.g. islands, lakes, forest fragments) than in studies with nondiscrete sampling units (e.g. equal-area study plots). For each topic, we summarize the current state of knowledge and key future directions.

Keywords: community ecology; environmental gradients; functional traits; genetic diversity; population genetics; species diversity.

PubMed Disclaimer

Publication types

LinkOut - more resources