Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 8:108:239-46.
doi: 10.1016/j.carbpol.2014.02.070. Epub 2014 Mar 14.

A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to hyaluronan in water

Affiliations

A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to hyaluronan in water

Matteo D'Este et al. Carbohydr Polym. .

Abstract

The activation of carboxyl groups with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS) for amide formation is the standard method for amine ligation to hyaluronan (HA), and a very well established wide-ranging bioconjugation method. In this paper we compare 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) to EDC/NHS activation chemistry for HA ligation using an array of substrates including small, large and functional molecules. For all the substrates tested DMTMM yields were superior at parity of feed ratio. DMTMM chemistry resulted effective also in absence of pH control, which is essential for EDC/NHS conjugation. Overall our results demonstrate that DMTMM is more efficient than EDC/NHS for ligation of amines to HA and does not require accurate pH control or pH shift during the reaction to be effective. DMTMM-mediated ligation is a new promising chemical tool to synthesize HA derivatives for biomedical and pharmaceutical applications.

Keywords: Amide formation; Bioconjugates; DMTMM; EDC/NHS; Hyaluronan modification.

PubMed Disclaimer

Publication types

LinkOut - more resources