Interferon-λ in the context of viral infections: production, response and therapeutic implications
- PMID: 24751921
- PMCID: PMC6741612
- DOI: 10.1159/000360084
Interferon-λ in the context of viral infections: production, response and therapeutic implications
Abstract
Interferon (IFN)-λ forms the type III IFN family. Although they signal through distinct receptors, type I (IFN-α/β) and type III IFNs elicit remarkably similar responses in cells. However, in vivo, type III and type I IFN responses are not fully redundant as their respective contribution to the antiviral defense highly depends on virus species. IFN-λ is much more potent than IFN-α/β at controlling rotavirus infection. In contrast, clearance of several other viruses, such as influenza virus, mostly depends on IFN-α/β. The IFN-λ receptor was reported to be preferentially expressed on epithelial cells. Cells responsible for IFN-λ production are still poorly characterized but seem to overlap only partly IFN-α/β-producing cells. Accumulating data suggest that epithelial cells are also important IFN-λ producers. Thus, IFN-λ may primarily act as a protection of mucosal entities, such as the lung, skin or digestive tract. Type I and type III IFN signal transduction pathways largely overlap, and cross talk between these IFN systems occurs. Finally, this review addresses the potential benefit of IFN-λ use for therapeutic purposes and summarizes recent results of genome-wide association studies that identified polymorphisms in the region of the IFN-λ3 gene impacting on the outcome of treatments against hepatitis C virus infection.
Figures
References
-
- Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77. - PubMed
-
- Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–68. - PubMed
-
- Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45:164–171. - PMC - PubMed
-
- Lasfar A, Lewis-Antes A, Smirnov SV, Anantha S, Abushahba W, Tian B, Reuhl K, Dickensheets H, Sheikh F, Donnelly RP, Raveche E, Kotenko SV. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res. 2006;66:4468–4477. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
