Parallel independent evolution of pathogenicity within the genus Yersinia
- PMID: 24753568
- PMCID: PMC4020045
- DOI: 10.1073/pnas.1317161111
Parallel independent evolution of pathogenicity within the genus Yersinia
Abstract
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
Keywords: Enterobacteriaceae; genomics metabolic streamlining; pathoadaptation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Comment in
-
Bacterial evolution: Parting of the ways for Yersinia.Nat Rev Microbiol. 2014 Jun;12(6):394. doi: 10.1038/nrmicro3281. Nat Rev Microbiol. 2014. PMID: 24830470 No abstract available.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
