Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May-Jun;20(3):48-54.

The pharmacodynamics of L-arginine

  • PMID: 24755570
Review

The pharmacodynamics of L-arginine

Rainer H Böger. Altern Ther Health Med. 2014 May-Jun.

Abstract

L-Arginine is a precursor for nitric oxide (NO) synthesis. NO is a ubiquitous mediator that is formed by a family of enzymes called NO synthases (NOSs). In the brain, NO acts as a neurotransmitter; in the immune system, it acts as a mediator of host defense; and in the cardiovascular system, it mediates the protective effects of the intact endothelium, acting as a vasodilator and endogenous, antiatherogenic molecule. About 5 g of L-arginine are ingested each day in a normal Western diet. Plasma levels of L-arginine are not significantly reduced in most diseases, except in end-stage renal failure during hemodialysis treatment. Nonetheless, intravenous or dietary (oral) administration of relatively large doses of L-arginine has been shown to result in enhanced NO formation in individuals with impaired endothelial function at baseline. In several controlled clinical trials, long-term administration of L-arginine has been shown to improve the symptoms of cardiovascular disease. However, in other trials, L-arginine was not beneficial, and in a recent study, the authors reported higher mortality for participants receiving L-arginine than for those receiving placebo. Recently, it became clear that endogenous levels of asymmetric dimethylarginine (ADMA), a competitive inhibitor of L-Arginine metabolism by NOS, may determine an individual's response to L-arginine supplementation. L-Arginine appears to exert no effect in individuals with low ADMA levels, whereas in those with high levels, L-arginine restores the L-arginine/ADMA ratio to normal and, thereby, normalizes endothelial function. In conclusion, the effects of L-arginine supplementation on human physiology appear to be multicausal and dose-related. Doses of 3-8 g/d appear to be safe and not to cause acute pharmacologic effects in humans.

PubMed Disclaimer

MeSH terms

LinkOut - more resources