Recent progress in voltage-sensitive dye imaging for neuroscience
- PMID: 24757943
- DOI: 10.1166/jnn.2014.9531
Recent progress in voltage-sensitive dye imaging for neuroscience
Abstract
Voltage-sensitive dye imaging (VSDi) enables visualization of information processing in different areas of the brain with reasonable spatial and temporal resolution. VSDi employs different chemical compounds to transduce neural activity directly into the changes in intrinsic optical signal. Physically, voltage-sensitive dyes (VSDs) are chemical probes that reside in the neural membrane and change their fluorescence or absorbance in response to membrane potential changes. Based on these features, VSDs can be divided into two groups-absorbance and fluorescence. The spatial and temporal resolution of the VSDi is limited mainly by the technical characteristics of the optical imaging setup (e.g., computer and light-sensitive device-charge-coupled device (CCD) camera or photodiode array). In this article, we briefly review the development of the VSD, technique of VSDi and applications in functional brain imaging.
Similar articles
-
Voltage-sensitive dye imaging: Technique review and models.J Physiol Paris. 2010 Jan-Mar;104(1-2):40-50. doi: 10.1016/j.jphysparis.2009.11.009. Epub 2009 Nov 10. J Physiol Paris. 2010. PMID: 19909809 Review.
-
Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors.ACS Chem Neurosci. 2025 Mar 5;16(5):761-771. doi: 10.1021/acschemneuro.4c00849. Epub 2025 Feb 13. ACS Chem Neurosci. 2025. PMID: 39943826 Free PMC article. Review.
-
In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations.Nat Commun. 2021 Jun 15;12(1):3630. doi: 10.1038/s41467-021-23901-7. Nat Commun. 2021. PMID: 34131136 Free PMC article.
-
Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.Neuroimage. 2011 Jan 15;54(2):1196-210. doi: 10.1016/j.neuroimage.2010.08.041. Epub 2010 Aug 26. Neuroimage. 2011. PMID: 20800686
-
Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.Adv Exp Med Biol. 2015;859:273-96. doi: 10.1007/978-3-319-17641-3_11. Adv Exp Med Biol. 2015. PMID: 26238057 Review.
Cited by
-
Self-Reset Image Sensor With a Signal-to-Noise Ratio Over 70 dB and Its Application to Brain Surface Imaging.Front Neurosci. 2021 Jun 15;15:667932. doi: 10.3389/fnins.2021.667932. eCollection 2021. Front Neurosci. 2021. PMID: 34211365 Free PMC article.
-
Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1.Int J Mol Sci. 2019 Aug 21;20(17):4086. doi: 10.3390/ijms20174086. Int J Mol Sci. 2019. PMID: 31438573 Free PMC article.
-
Label-free Optical Imaging of Membrane Potential.Curr Opin Biomed Eng. 2019 Dec;12:118-125. doi: 10.1016/j.cobme.2019.11.001. Epub 2019 Nov 13. Curr Opin Biomed Eng. 2019. PMID: 32864527 Free PMC article.
-
Quantum Dot-Peptide-Fullerene Bioconjugates for Visualization of in Vitro and in Vivo Cellular Membrane Potential.ACS Nano. 2017 Jun 27;11(6):5598-5613. doi: 10.1021/acsnano.7b00954. Epub 2017 May 30. ACS Nano. 2017. PMID: 28514167 Free PMC article.
-
High-resolution VSDI retinotopic mapping via a DLP-based projection system.Biomed Opt Express. 2019 Sep 13;10(10):5117-5129. doi: 10.1364/BOE.10.005117. eCollection 2019 Oct 1. Biomed Opt Express. 2019. PMID: 31646034 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Other Literature Sources