Insights into molecular evolution from yeast genomics
- PMID: 24760744
- DOI: 10.1002/yea.3018
Insights into molecular evolution from yeast genomics
Abstract
Enabled by comparative genomics, yeasts have increasingly developed into a powerful model system for molecular evolution. Here we survey several areas in which yeast studies have made important contributions, including regulatory evolution, gene duplication and divergence, evolution of gene order and evolution of complexity. In each area we highlight key studies and findings based on techniques ranging from statistical analysis of large datasets to direct laboratory measurements of fitness. Future work will combine traditional evolutionary genetics analysis and experimental evolution with tools from systems biology to yield mechanistic insight into complex phenotypes.
Keywords: comparative genomics; complex phenotypes; experimental evolution; functional genomics; functional synthesis; gene duplication; gene order; molecular evolution; population genomics; regulatory evolution.
Copyright © 2014 John Wiley & Sons, Ltd.
Similar articles
-
Yeast evolution and comparative genomics.Annu Rev Microbiol. 2005;59:135-53. doi: 10.1146/annurev.micro.59.030804.121400. Annu Rev Microbiol. 2005. PMID: 15877535 Review.
-
Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.Mol Biol Evol. 2005 Jan;22(1):40-50. doi: 10.1093/molbev/msh257. Epub 2004 Sep 8. Mol Biol Evol. 2005. PMID: 15356281
-
Ecological and evolutionary genomics of Saccharomyces cerevisiae.Mol Ecol. 2006 Mar;15(3):575-91. doi: 10.1111/j.1365-294X.2006.02778.x. Mol Ecol. 2006. PMID: 16499686 Review.
-
Very low rate of gene conversion in the yeast genome.Mol Biol Evol. 2012 Dec;29(12):3817-26. doi: 10.1093/molbev/mss192. Epub 2012 Jul 27. Mol Biol Evol. 2012. PMID: 22844073
-
How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution?Trends Genet. 2004 Sep;20(9):403-7. doi: 10.1016/j.tig.2004.07.006. Trends Genet. 2004. PMID: 15313547
Cited by
-
Clade- and species-specific features of genome evolution in the Saccharomycetaceae.FEMS Yeast Res. 2015 Aug;15(5):fov035. doi: 10.1093/femsyr/fov035. Epub 2015 Jun 10. FEMS Yeast Res. 2015. PMID: 26066552 Free PMC article.
-
Population structure of mitochondrial genomes in Saccharomyces cerevisiae.BMC Genomics. 2015 Jun 11;16(1):451. doi: 10.1186/s12864-015-1664-4. BMC Genomics. 2015. PMID: 26062918 Free PMC article.
-
Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast.bioRxiv [Preprint]. 2023 Jul 12:2023.05.11.540375. doi: 10.1101/2023.05.11.540375. bioRxiv. 2023. Update in: G3 (Bethesda). 2023 Sep 30;13(10):jkad159. doi: 10.1093/g3journal/jkad159. PMID: 37503218 Free PMC article. Updated. Preprint.
-
Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast.G3 (Bethesda). 2023 Sep 30;13(10):jkad159. doi: 10.1093/g3journal/jkad159. G3 (Bethesda). 2023. PMID: 37481264 Free PMC article.
-
Metabolic and chaperone gene loss marks the origin of animals: evidence for Hsp104 and Hsp78 chaperones sharing mitochondrial enzymes as clients.PLoS One. 2015 Feb 24;10(2):e0117192. doi: 10.1371/journal.pone.0117192. eCollection 2015. PLoS One. 2015. PMID: 25710177 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases