Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;33(6):1313-23.
doi: 10.1109/TMI.2014.2309986. Epub 2014 Mar 11.

Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography

Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography

Aaron C Chan et al. IEEE Trans Med Imaging. 2014 Jun.

Abstract

Recent hardware advances in optical coherence tomography (OCT) have led to ever higher A-scan rates. However, the estimation of blood flow axial velocities is limited by the presence and type of noise. Higher acquisition rates alone do not necessarily enable precise quantification of Doppler velocities, particularly if the estimator is suboptimal. In previous work, we have shown that the Kasai autocorrelation estimator is statistically suboptimal under conditions of additive white Gaussian noise. In addition, for practical OCT measurements of flow, decorrelation noise affects Doppler frequency estimation by broadening the signal spectrum. Here, we derive a general maximum likelihood estimator (MLE) for Doppler frequency estimation that takes into account additive white noise as well as signal decorrelation. We compare the decorrelation MLE with existing techniques using simulated and flow phantom data and find that it has better performance, achieving the Cramer-Rao lower bound. By making an approximation, we also provide an interpretation of this method in the Fourier domain. We anticipate that this estimator will be particularly suited for estimating blood flow in in vivo scenarios.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources