Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;22(4):735-44.
doi: 10.1109/TNSRE.2014.2303394. Epub 2014 Jan 29.

Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification

Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification

Arjan Gijsberts et al. IEEE Trans Neural Syst Rehabil Eng. 2014 Jul.

Abstract

There has been increasing interest in applying learning algorithms to improve the dexterity of myoelectric prostheses. In this work, we present a large-scale benchmark evaluation on the second iteration of the publicly released NinaPro database, which contains surface electromyography data for 6 DOF force activations as well as for 40 discrete hand movements. The evaluation involves a modern kernel method and compares performance of three feature representations and three kernel functions. Both the force regression and movement classification problems can be learned successfully when using a nonlinear kernel function, while the exp- χ(2) kernel outperforms the more popular radial basis function kernel in all cases. Furthermore, combining surface electromyography and accelerometry in a multimodal classifier results in significant increases in accuracy as compared to when either modality is used individually. Since window-based classification accuracy should not be considered in isolation to estimate prosthetic controllability, we also provide results in terms of classification mistakes and prediction delay. To this extent, we propose the movement error rate as an alternative to the standard window-based accuracy. This error rate is insensitive to prediction delays and it allows us therefore to quantify mistakes and delays as independent performance characteristics. This type of analysis confirms that the inclusion of accelerometry is superior, as it results in fewer mistakes while at the same time reducing prediction delay.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources