A possible model for the inner wall of the acetylcholine receptor channel
- PMID: 2476184
- DOI: 10.1016/0005-2736(89)90301-5
A possible model for the inner wall of the acetylcholine receptor channel
Abstract
A structural model of the inner wall of the acetylcholine receptor (AChR) channel is developed using assumptions derived from the results of the recent labelling experiments of the MII helices by noncompetitive blockers. The assumption of steric blocking of the channel by chlorpromazine (CPZ) in the neighbourhood of the labelled serines imposes the MII helices to be in contact at this level and allows the calculation of their minimal interaxial distance. The assumption that CPZ diffuses to this position through the upper crowded part of the channel imposes that the helices are more distant in this region and permits the determination of a tilt of about 7 degrees with respect to the central axis. Electrostatic potentials are used to demonstrate the effect of the charged residues at the exit of the pore. A discussion is given on the possible aptitude of MI to satisfy the contacts necessary with the MII/s at the different heights of the model.
Similar articles
-
The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel.Proc Natl Acad Sci U S A. 1990 Jun;87(12):4675-9. doi: 10.1073/pnas.87.12.4675. Proc Natl Acad Sci U S A. 1990. PMID: 1693775 Free PMC article.
-
Energy profiles in the acetylcholine receptor (AChR) channel. The MII-helix model and the role of the remaining helices.FEBS Lett. 1989 Jul 31;252(1-2):63-8. doi: 10.1016/0014-5793(89)80890-7. FEBS Lett. 1989. PMID: 2547652
-
Blocking of the nicotinic acetylcholine receptor ion channel by chlorpromazine, a noncompetitive inhibitor: A molecular dynamics simulation study.J Phys Chem B. 2006 Oct 19;110(41):20640-8. doi: 10.1021/jp0604591. J Phys Chem B. 2006. PMID: 17034254
-
The acetylcholine receptor: functional architecture and regulation.Adv Second Messenger Phosphoprotein Res. 1990;24:15-9. Adv Second Messenger Phosphoprotein Res. 1990. PMID: 1698404 Review. No abstract available.
-
Noncompetitive inhibitors of the acetylcholine receptor help paint a picture of its ion channel.P R Health Sci J. 1995 Sep;14(3):199-209. P R Health Sci J. 1995. PMID: 8588021 Review.
Cited by
-
The roles of serine and threonine sidechains in ion channels: a modelling study.Eur Biophys J. 1992;21(4):281-98. doi: 10.1007/BF00185123. Eur Biophys J. 1992. PMID: 1385107
-
Comparison of lowest energy conformations of dimethylcurine and methoxyverapamil: evidence of ternary association of calcium channel, Ca2+, and calcium entry blockers.J Membr Biol. 1993 Aug;135(2):119-27. doi: 10.1007/BF00231437. J Membr Biol. 1993. PMID: 8411133
-
Mouse-Torpedo chimeric alpha-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence.Cell Mol Neurobiol. 1997 Feb;17(1):13-33. doi: 10.1023/a:1026372903352. Cell Mol Neurobiol. 1997. PMID: 9118205 Free PMC article.
-
The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics.Biophys J. 1996 Oct;71(4):1659-71. doi: 10.1016/S0006-3495(96)79370-0. Biophys J. 1996. PMID: 8889144 Free PMC article.
-
Electrostatic interactions regulate desensitization of the nicotinic acetylcholine receptor.Biophys J. 2000 Mar;78(3):1324-34. doi: 10.1016/S0006-3495(00)76687-2. Biophys J. 2000. PMID: 10692319 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources