Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units
- PMID: 24763583
- DOI: 10.1126/science.1251413
Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units
Abstract
The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.
Comment in
-
Structural biology. The 30-nm fiber redux.Science. 2014 Apr 25;344(6182):370-2. doi: 10.1126/science.1253852. Science. 2014. PMID: 24763580 No abstract available.
Similar articles
-
Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.Mol Cell. 2018 Dec 6;72(5):902-915.e7. doi: 10.1016/j.molcel.2018.09.027. Epub 2018 Nov 1. Mol Cell. 2018. PMID: 30392928
-
Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction.Cell Res. 2024 Oct;34(10):707-724. doi: 10.1038/s41422-024-01009-z. Epub 2024 Aug 5. Cell Res. 2024. PMID: 39103524 Free PMC article.
-
Nucleosome arrays reveal the two-start organization of the chromatin fiber.Science. 2004 Nov 26;306(5701):1571-3. doi: 10.1126/science.1103124. Science. 2004. PMID: 15567867
-
Higher-order structure of the 30-nm chromatin fiber revealed by cryo-EM.IUBMB Life. 2016 Nov;68(11):873-878. doi: 10.1002/iub.1568. Epub 2016 Oct 5. IUBMB Life. 2016. PMID: 27704715 Review.
-
Structural insights of nucleosome and the 30-nm chromatin fiber.Curr Opin Struct Biol. 2016 Feb;36:106-15. doi: 10.1016/j.sbi.2016.01.013. Epub 2016 Feb 9. Curr Opin Struct Biol. 2016. PMID: 26872330 Review.
Cited by
-
Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study.J Am Chem Soc. 2015 Aug 19;137(32):10205-15. doi: 10.1021/jacs.5b04086. Epub 2015 Aug 10. J Am Chem Soc. 2015. PMID: 26192632 Free PMC article.
-
HMGB1 restores a dynamic chromatin environment in the presence of linker histone by deforming nucleosomal DNA.bioRxiv [Preprint]. 2024 Aug 24:2024.08.23.609244. doi: 10.1101/2024.08.23.609244. bioRxiv. 2024. PMID: 39229246 Free PMC article. Preprint.
-
Columnar structure of human telomeric chromatin.Nature. 2022 Sep;609(7929):1048-1055. doi: 10.1038/s41586-022-05236-5. Epub 2022 Sep 14. Nature. 2022. PMID: 36104563
-
Determining mesoscale chromatin structure parameters from spatially correlated cleavage data using a coarse-grained oligonucleosome model.bioRxiv [Preprint]. 2024 Jul 29:2024.07.28.605011. doi: 10.1101/2024.07.28.605011. bioRxiv. 2024. PMID: 39131347 Free PMC article. Preprint.
-
Developments, applications, and prospects of cryo-electron microscopy.Protein Sci. 2020 Apr;29(4):872-882. doi: 10.1002/pro.3805. Epub 2019 Dec 26. Protein Sci. 2020. PMID: 31854478 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources