Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 21;20(15):4197-207.
doi: 10.3748/wjg.v20.i15.4197.

Circadian clock circuitry in colorectal cancer

Affiliations
Review

Circadian clock circuitry in colorectal cancer

Gianluigi Mazzoccoli et al. World J Gastroenterol. .

Abstract

Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.

Keywords: Circadian rhythm; Clock gene; Colorectal cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Biological clock and the cell processes involved in colorectal carcinogenesis. The scheme renders the transcriptional/translational feedback loop through which the molecular clockwork operates, and depicts its interplay with the aryl hydrocarbon receptor (AHR)/ARNT system in the control of the cell cycle and apoptosis, and ultimately in the regulation of the processes of cell proliferation and death, whose deregulation brings about colorectal cancer (CRC) onset and progression. CK: Casein kinase; AHR: Aryl hydrocarbon receptor; PPAR: Peroxisome proliferator-activated receptor; CHK: Checkpoint kinase; ATR: Ataxia telangiectasia and rad3-related; ATM: Ataxia telangiectasia mutated; ARNT: Aryl hydrocarbon receptor nuclear translocator; HLF: Hepatic leukaemia factor; TEF: Thyrotroph embryonic factor.

Similar articles

Cited by

References

    1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917. - PubMed
    1. Ferlay J, Parkin DM, Curado MP, Bray F, Edwards B, Shin HR, Forman D. Cancer Incidence in Five Continents, Volumes I to IX: IARC CancerBase No. 9 [Internet] Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://ci5.iarc.fr.
    1. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–2460. - PMC - PubMed
    1. Jensen SA, Vainer B, Kruhøffer M, Sørensen JB. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression. BMC Cancer. 2009;9:25. - PMC - PubMed
    1. Wright CM, Dent OF, Newland RC, Barker M, Chapuis PH, Bokey EL, Young JP, Leggett BA, Jass JR, Macdonald GA. Low level microsatellite instability may be associated with reduced cancer specific survival in sporadic stage C colorectal carcinoma. Gut. 2005;54:103–108. - PMC - PubMed

Publication types