Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits
- PMID: 24767114
- DOI: 10.1016/j.plantsci.2014.03.003
Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits
Abstract
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits.
Keywords: Co-expression network; Genotype–phenotype; Systems genetics; eQTL.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Similar articles
-
A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.PLoS One. 2013 Jul 16;8(7):e68551. doi: 10.1371/journal.pone.0068551. Print 2013. PLoS One. 2013. PMID: 23874666 Free PMC article.
-
Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.Genome Med. 2016 Sep 30;8(1):101. doi: 10.1186/s13073-016-0352-6. Genome Med. 2016. PMID: 27716393 Free PMC article.
-
Systems Genetics for Evolutionary Studies.Methods Mol Biol. 2019;1910:635-652. doi: 10.1007/978-1-4939-9074-0_21. Methods Mol Biol. 2019. PMID: 31278680
-
Association genetics of complex traits in plants.New Phytol. 2011 Mar;189(4):909-922. doi: 10.1111/j.1469-8137.2010.03593.x. Epub 2010 Dec 23. New Phytol. 2011. PMID: 21182529 Review.
-
Quantitative genomics: exploring the genetic architecture of complex trait predisposition.J Anim Sci. 2004;82 E-Suppl:E300-312. doi: 10.2527/2004.8213_supplE300x. J Anim Sci. 2004. PMID: 15471811 Review.
Cited by
-
Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels.Front Plant Sci. 2021 Nov 26;12:761446. doi: 10.3389/fpls.2021.761446. eCollection 2021. Front Plant Sci. 2021. PMID: 34899785 Free PMC article.
-
Genetic Addiction Risk Score (GARS): molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS).Mol Neurobiol. 2014 Dec;50(3):765-96. doi: 10.1007/s12035-014-8726-5. Epub 2014 May 31. Mol Neurobiol. 2014. PMID: 24878765 Free PMC article.
-
A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize.PLoS One. 2019 Dec 31;14(12):e0227011. doi: 10.1371/journal.pone.0227011. eCollection 2019. PLoS One. 2019. PMID: 31891625 Free PMC article.
-
GWAS-based population genetic analysis identifies bZIP29 as a heterotic gene in maize.Plant Commun. 2025 May 12;6(5):101289. doi: 10.1016/j.xplc.2025.101289. Epub 2025 Feb 20. Plant Commun. 2025. PMID: 39985171 Free PMC article.
-
Construction of co-expression network based on natural expression variation of xylogenesis-related transcripts in Eucalyptus tereticornis.Mol Biol Rep. 2016 Oct;43(10):1129-46. doi: 10.1007/s11033-016-4046-3. Epub 2016 Jul 27. Mol Biol Rep. 2016. PMID: 27465117
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources