Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;41(6):513-23.
doi: 10.1016/j.nucmedbio.2014.03.023. Epub 2014 Apr 2.

In vivo evaluation of (18)F-labeled TCO for pre-targeted PET imaging in the brain

Affiliations

In vivo evaluation of (18)F-labeled TCO for pre-targeted PET imaging in the brain

Leonie Wyffels et al. Nucl Med Biol. 2014 Jul.

Abstract

Introduction: The tetrazine-trans-cylooctene cycloaddition using radiolabeled tetrazine or radiolabeled trans-cyclooctene (TCO) has been reported to be a very fast, selective and bioorthogonal reaction that could be useful for in vivo radiolabeling of molecules. We wanted to evaluate the in vivo biodistribution profile and brain uptake of (18)F-labeled TCO ([(18)F]TCO) to assess its potential for pre-targeted imaging in the brain.

Methods: We evaluated the in vivo behavior of [(18)F]TCO via an ex vivo biodistribution study complemented by in vivo μPET imaging at 5, 30, 60, 90, 120 and 240 min post tracer injection. An in vivo metabolite study was performed at 5 min, 30 min and 120 min post [(18)F]TCO injection by RP-HPLC analysis of plasma and brain extracts. Incubation with human liver microsomes was performed to further evaluate the metabolite profile of the tracer.

Results: μPET imaging and ex-vivo biodistribution revealed an high initial brain uptake of [(18)F]TCO (3.8%ID/g at 5 min pi) followed by a washout to 3.0%ID/g at 30 min pi. Subsequently the brain uptake increased again to 3.7%ID/g at 120 min pi followed by a slow washout until 240 min pi (2.9%ID/g). Autoradiography confirmed homogenous brain uptake. On the μPET images bone uptake became gradually visible after 120 min pi and was clearly visible at 240 min pi. The metabolite study revealed a fast metabolization of [(18)F]TCO in plasma and brain into three main polar radiometabolites.

Conclusions: Although [(18)F]TCO has previously been described to be a useful tracer for radiolabeling of tetrazine modified targeting molecules, our study indicates that its utility for in vivo chemistry and pre-targeted imaging will be limited. Although [(18)F]TCO clearly enters the brain, it is quickly metabolized with a non-specific accumulation of radioactivity in the brain and bone.

Keywords: (18)F-trans-cyclooctene; PET; Pre-targeted imaging.

PubMed Disclaimer

Publication types