Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug;23(4):453-9.
doi: 10.1016/j.breast.2014.03.009. Epub 2014 Apr 24.

Prediction of non-sentinel lymph node involvement in breast cancer patients with a positive sentinel lymph node

Affiliations
Free article

Prediction of non-sentinel lymph node involvement in breast cancer patients with a positive sentinel lymph node

Anneleen Reynders et al. Breast. 2014 Aug.
Free article

Abstract

Completion axillary lymph node dissection (cALND) is the golden standard if breast cancer involves the sentinel lymph node (SLN). However, most non-sentinel lymph nodes (NSLN) are not involved, cALND has a considerable complication rate and does not improve outcome. We here present and validate our predictive model for positive NSLNs in the cALND if the SLN is positive. Consecutive early breast cancer patients from one center undergoing cALND for a positive SLN were included. We assessed demographic and clinicopathological variables for NSLN involvement. Uni- and multivariate analysis was performed. A predictive model was built and validated in two external centers. 21.9% of 470 patients had at least one involved NSLN. In univariate analysis, seven variables were significantly correlated with NSLN involvement: tumor size, grade, lymphovascular invasion (LVI), number of positive and negative SLNs, size of SLN metastasis and intraoperative positive SLN. In multivariate analysis, LVI, number of negative SLNs, size of SLN metastasis and intraoperative positive pathological evaluation were independent predictors for NSLN involvement. The calculated risk resulted in an AUC of 0.76. Applied to the external data, the model was accurate and discriminating for one (AUC = 0.75) and less for the other center (AUC = 0.58). A discriminative predictive model was constructed to calculate the risk of NSLN involvement in case of a positive SLN. External validation of our model reveals differences in performance when applied to data from other institutions concluding that such a predictive model requires validation prior to use.

Keywords: Breast cancer; External validation; Non-sentinel lymph node involvement; Prediction; Sentinel lymph node.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources