Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Dec;85(12):1396-404.
doi: 10.1136/jnnp-2014-307650. Epub 2014 Apr 25.

Imaging outcomes for trials of remyelination in multiple sclerosis

Affiliations
Review

Imaging outcomes for trials of remyelination in multiple sclerosis

Shahrukh Mallik et al. J Neurol Neurosurg Psychiatry. 2014 Dec.

Abstract

Trials of potential neuroreparative agents are becoming more important in the spectrum of multiple sclerosis research. Appropriate imaging outcomes are required that are feasible from a time and practicality point of view, as well as being sensitive and specific to myelin, while also being reproducible and clinically meaningful. Conventional MRI sequences have limited specificity for myelination. We evaluate the imaging modalities which are potentially more specific to myelin content in vivo, such as magnetisation transfer ratio (MTR), restricted proton fraction f (from quantitative magnetisation transfer measurements), myelin water fraction and diffusion tensor imaging (DTI) metrics, in addition to positron emission tomography (PET) imaging. Although most imaging applications to date have focused on the brain, we also consider measures with the potential to detect remyelination in the spinal cord and in the optic nerve. At present, MTR and DTI measures probably offer the most realistic and feasible outcome measures for such trials, especially in the brain. However, no one measure currently demonstrates sufficiently high sensitivity or specificity to myelin, or correlation with clinical features, and it should be useful to employ more than one outcome to maximise understanding and interpretation of findings with these sequences. PET may be less feasible for current and near-future trials, but is a promising technique because of its specificity. In the optic nerve, visual evoked potentials can indicate demyelination and should be correlated with an imaging outcome (such as optic nerve MTR), as well as clinical measures.

Keywords: MRI; Multiple Sclerosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Axial view of slices of the brain of a multiple sclerosis patient demonstrating appearance on (A) T2w imaging and (B) magnetisation transfer ratio (MTR) map of the corresponding slice. The red box contains a lesion which is markedly hypointense compared with normal appearing white matter (NAWM), hence corresponding to a low MTR value in the lesion, and compatible with demyelination. The green box contains three lesions which appear isointense or only slightly hypointense compared with NAWM, hence corresponding to higher lesion MTR (similar to or slightly less than NAWM), suggesting possible remyelination.

References

    1. Barkhof F, Calabresi PA, Miller DH, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–66. - PubMed
    1. Bitsch A, Kuhlmann T, Stadelmann C, et al. A Longitudinal MRI Study of Histopathologically Defined Hypointense Multiple Sclerosis Lesions. Ann Neurol 2001;49:793–6. - PubMed
    1. Van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998;50:1282–8 http://www.ncbi.nlm.nih.gov/pubmed/9595975 - PubMed
    1. Vavasour IM, Laule C, Li DKB, et al. Is the magnetization transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson Imaging 2011;33:713–8. - PubMed
    1. Schmierer K, Scaravilli F, Altmann DR, et al. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407–15. - PubMed

Publication types

MeSH terms