Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;59(2):95-110.
doi: 10.1007/s10858-014-9830-6. Epub 2014 Apr 26.

NMR structure analysis of uniformly 13C-labeled carbohydrates

Affiliations

NMR structure analysis of uniformly 13C-labeled carbohydrates

Carolina Fontana et al. J Biomol NMR. 2014 Jun.

Abstract

In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Prog Nucl Magn Reson Spectrosc. 2014 May;79:48-68 - PubMed
    1. Prog Nucl Magn Reson Spectrosc. 2010 May;56(4):346-59 - PubMed
    1. J Org Chem. 2010 Aug 6;75(15):4899-910 - PubMed
    1. J Am Chem Soc. 2012 Jul 4;134(26):10717-20 - PubMed
    1. Biopolymers. 2012 Mar;97(3):145-54 - PubMed

Publication types

LinkOut - more resources