Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 20;86(10):4783-90.
doi: 10.1021/ac403920q. Epub 2014 May 6.

Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring

Affiliations

Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring

Ling Yuan et al. Anal Chem. .

Abstract

Photopolymerization strategy, as one of the immobilization methods, has attracted considerable interest because of some advantages, such as easy operation, harmlessness to the biomolecules, and long storage stability. (E)-4-(4-Formylstyryl) pyridine (formylstyrylpyridine) was prepared through Heck reaction and used as a photopolymer material to immobilize biomimetic superoxide dismutase under ultraviolet irradiation (UV) irradiation in a short time. The styrylpyridinium moiety of Formylstyrylpyridine was photoreactive and formed a dimer under UV irradiation. Mn2P2O7 multilayer sheet, a novel superoxide dismutase mimic, was synthesized. The formed photopolymer can immobilize Mn2P2O7 firmly under UV irradiation. On the basis of high catalytic activity of Mn2P2O7 biomimetic enzyme and long-term stability of Mn2P2O7-formylstyrylpyridine film, after introducing multiwalled carbon nanotubes (MWCNTs), a novel electrochemical biosensing platform called MWCNTs/Mn2P2O7-formylstyrylpyridine for superoxide anion (O2(•-)) detection was constructed. The biosensor displayed good performance for O2(•-) detection and provided a reliable platform to adhere living cells directly on the modified electrode surface. Therefore, the biosensor was successfully applied to vitro determination of O2(•-) released from living cells, which had a promising prospect for living cells monitoring and diagnosis of reactive oxygen species-related diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources