Biomechanics of corneal ectasia and biomechanical treatments
- PMID: 24774009
- PMCID: PMC4850839
- DOI: 10.1016/j.jcrs.2014.04.013
Biomechanics of corneal ectasia and biomechanical treatments
Abstract
Many algorithms exist for the topographic/tomographic detection of corneas at risk for post-refractive surgery ectasia. It is proposed that the reason for the difficulty in finding a universal screening tool based on corneal morphologic features is that curvature, elevation, and pachymetric changes are all secondary signs of keratoconus and post-refractive surgery ectasia and that the primary abnormality is in the biomechanical properties. It is further proposed that the biomechanical modification is focal in nature, rather than a uniform generalized weakening, and that the focal reduction in elastic modulus precipitates a cycle of biomechanical decompensation that is driven by asymmetry in the biomechanical properties. This initiates a repeating cycle of increased strain, stress redistribution, and subsequent focal steepening and thinning. Various interventions are described in terms of how this cycle of biomechanical decompensation is interrupted, such as intrastromal corneal ring segments, which redistribute the corneal stress, and collagen crosslinking, which modifies the basic structural properties.
Financial disclosures: Proprietary or commercial disclosures are listed after the references.
Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Figures







Similar articles
-
Predictors of Successful Outcome following Intrastromal Corneal Ring Segments Implantation.Curr Eye Res. 2019 Jul;44(7):707-715. doi: 10.1080/02713683.2019.1594945. Epub 2019 Apr 2. Curr Eye Res. 2019. PMID: 30868919
-
Keratoconus: A Biomechanical Perspective.Curr Eye Res. 2023 Feb;48(2):121-129. doi: 10.1080/02713683.2022.2088798. Epub 2022 Jun 23. Curr Eye Res. 2023. PMID: 35746888 Review.
-
Computational Biomechanical Analysis of Asymmetric Ectasia Risk in Unilateral Post-LASIK Ectasia.J Refract Surg. 2016 Dec 1;32(12):811-820. doi: 10.3928/1081597X-20160929-01. J Refract Surg. 2016. PMID: 27930791 Free PMC article.
-
Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis.J Cataract Refract Surg. 2014 Jun;40(6):971-80. doi: 10.1016/j.jcrs.2013.08.065. J Cataract Refract Surg. 2014. PMID: 24857440 Free PMC article.
-
[Intrastromal corneal segments implantation in keratoconus].Vestn Oftalmol. 2012 Jan-Feb;128(1):47-51. Vestn Oftalmol. 2012. PMID: 22741297 Review. Russian.
Cited by
-
Late-onset corneal edema after customized crosslinking for progressive keratoconus.Am J Ophthalmol Case Rep. 2024 Jun 16;35:102090. doi: 10.1016/j.ajoc.2024.102090. eCollection 2024 Sep. Am J Ophthalmol Case Rep. 2024. PMID: 38983453 Free PMC article.
-
Detection ability of corneal biomechanical parameters for early diagnosis of ectasia.Eye (Lond). 2023 Jun;37(8):1665-1672. doi: 10.1038/s41433-022-02218-9. Epub 2022 Aug 29. Eye (Lond). 2023. PMID: 36038724 Free PMC article.
-
Corneal biomechanical parameters in keratoconus eyes with abnormal elevation on the back corneal surface only versus both back and front surfaces.Sci Rep. 2021 Jun 7;11(1):11971. doi: 10.1038/s41598-021-91263-7. Sci Rep. 2021. PMID: 34099765 Free PMC article.
-
Comparison of waveform-derived corneal stiffness and stress-strain extensometry-derived corneal stiffness using different cross-linking irradiances: an experimental study with air-puff applanation of ex vivo porcine eyes.Graefes Arch Clin Exp Ophthalmol. 2020 Oct;258(10):2173-2184. doi: 10.1007/s00417-020-04792-8. Epub 2020 Jun 17. Graefes Arch Clin Exp Ophthalmol. 2020. PMID: 32556637 Free PMC article.
-
Study of the Influence of Boundary Conditions on Corneal Deformation Based on the Finite Element Method of a Corneal Biomechanics Model.Biomimetics (Basel). 2024 Jan 25;9(2):73. doi: 10.3390/biomimetics9020073. Biomimetics (Basel). 2024. PMID: 38392119 Free PMC article.
References
-
- Kim W-J, Rabinowitz YS, Meisler DM, Wilson SE. Keratocyte apoptosis associated with keratoconus. Exp Eye Res. 1999;69:475–481. - PubMed
-
- Matthews FJ, Cook SD, Majid MA, Dick AD, Smith VA. Changes in the balance of the tissue inhibitor of matrix metalloproteinases (TIMPs)-1 and -3 may promote keratocyte apoptosis in keratoconus. Exp Eye Res. 2007;84:1125–1134. - PubMed
-
- Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ. Changes in collagen orientation and distribution in keratoconus corneas. [Accessed January 25, 2014];Invest Ophthalmol Vis Sci. 2005 46:1948–1956. Available at: http://www.iovs.org/content/46/6/1948.full.pdf. - PubMed
-
- Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T-i, Nishida T, Jester JV. Second-harmonic imaging microscopy of normal human and keratoconus cornea. [Accessed January 25, 2014];Invest Ophthalmol Vis Sci. 2007 48:1087–1094. Available at: http://www.iovs.org/cgi/reprint/48/3/1087. - PMC - PubMed
-
- Foster CS, Yamamoto GK. Ocular rigidity in keratoconus. Am J Ophthalmol. 1978;86:802–806. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources