Anion channels with multiple conductance levels in a mouse B lymphocyte cell line
- PMID: 2477528
- PMCID: PMC1190467
- DOI: 10.1113/jphysiol.1989.sp017521
Anion channels with multiple conductance levels in a mouse B lymphocyte cell line
Abstract
1. Multiple conductance level ion channels were recorded in excised and cell-attached patches from cells of a mouse B lymphocyte hybridoma line. The reversal potential for the single-channel current was unaffected by the species of cation on the cytoplasmic face of the patch, but changed as the Cl- concentration was altered, indicating that the channel is anion selective. 2. The permeability sequence determined from reversal potentials was F- greater than I- greater than SCN- greater than Br- greater than Cl- greater than glucuronate greater than NO3- greater than aspartate. This was different from the conductance sequence (Cl- greater than SCN- = F- greater than Br- greater than NO3- greater than I- greater than glucuronate greater than aspartate), indicating interaction of ions within the pore of the channel. Consistent with this was the observation of anomalous mole fraction dependence with a mixed solution of thiocyanate and chloride. 3. In addition to the main open level (about 400 pS; excised patch, symmetrical 165 mM-Cl-), three subconductance levels and one supraconductance level were observed. These were concluded to be integral components of the same channel based on coincidence of appearance and identical permeabilities. 4. The channel is voltage dependent, with open probability in excised patches increasing with more positive potentials. The channel was reversibly blocked in a voltage-dependent manner by SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid), a stilbene derivative, on the cytoplasmic face. 5. Several differences were noted between cell-attached and excised-patch recordings. The multiple conductance level channel was less frequently seen in cell-attached patches but could often be induced to appear by prolonged application of positive voltages. This induced channel in attached patches showed an altered voltage dependence which could be partially mimicked in excised patches by including cyclic AMP and ATP in the solution on the cytoplasmic side of the membrane.
Similar articles
-
Characterization of large-conductance chloride channels in rabbit colonic smooth muscle.J Physiol. 1992 Mar;448:355-82. doi: 10.1113/jphysiol.1992.sp019046. J Physiol. 1992. PMID: 1375640 Free PMC article.
-
Chloride channels activated by osmotic stress in T lymphocytes.J Gen Physiol. 1993 Jun;101(6):801-26. doi: 10.1085/jgp.101.6.801. J Gen Physiol. 1993. PMID: 7687269 Free PMC article.
-
Characterization of a phosphorylation-activated Cl-selective channel in isolated Necturus enterocytes.J Physiol. 1989 Sep;416:517-37. doi: 10.1113/jphysiol.1989.sp017775. J Physiol. 1989. PMID: 2481731 Free PMC article.
-
Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones.J Physiol. 1987 Apr;385:243-86. doi: 10.1113/jphysiol.1987.sp016493. J Physiol. 1987. PMID: 2443667 Free PMC article. Review.
-
[A flip-flop model of the chloride channel complex explains the dysregulation of the chloride flow in the plasmalemma of cells in cystic fibrosis].Klin Wochenschr. 1991 May 3;69(7):283-8. doi: 10.1007/BF01644755. Klin Wochenschr. 1991. PMID: 1712413 Review. German.
Cited by
-
Patch-clamp profile of ion channels in resting murine B lymphocytes.J Membr Biol. 1990 Mar;114(2):175-88. doi: 10.1007/BF01869098. J Membr Biol. 1990. PMID: 1692882
-
Activation of subconductance states by gamma-aminobutyric acid and its analogs in chick cerebral neurons.Pflugers Arch. 1990 Jun;416(4):454-61. doi: 10.1007/BF00370754. Pflugers Arch. 1990. PMID: 1697945
-
Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.J Physiol. 1990 May;424:133-49. doi: 10.1113/jphysiol.1990.sp018059. J Physiol. 1990. PMID: 2391650 Free PMC article.
-
Connexin channel permeability to cytoplasmic molecules.Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):120-43. doi: 10.1016/j.pbiomolbio.2007.03.011. Epub 2007 Mar 19. Prog Biophys Mol Biol. 2007. PMID: 17470375 Free PMC article. Review.
-
ATP release via anion channels.Purinergic Signal. 2005 Dec;1(4):311-28. doi: 10.1007/s11302-005-1557-0. Epub 2005 Dec 3. Purinergic Signal. 2005. PMID: 18404516 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources