Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;141(1):53-61.
doi: 10.1055/s-0033-1351087. Epub 2014 Apr 28.

[Antibiotic Consumption and the Development of Antibiotic Resistance in Surgical Units]

[Article in German]
Affiliations

[Antibiotic Consumption and the Development of Antibiotic Resistance in Surgical Units]

[Article in German]
I Tammer et al. Zentralbl Chir. 2016 Feb.

Abstract

Background: Antibiotic resistence is increasing worldwide.

Aim: A longitudinal analysis of the influence of the density of antibiotic use on the development of resistance in surgical units was undertaken.

Material and methods: Over five years the incidence of pathogens and the resistance rates of isolates from patients of normal surgical units and those of a surgical ICU at a university hospital were examined. The resistence rates were correlated with the density of antibiotic use - calculated from the antibiotic consumption (in DDD) and the number of patient-days.

Results: At both units, Enterobacteriaceae and Enterococci were mostly cultured. Among the Enterobacteriaceae, E. coli, Klebsiella spp., Proteus mirabilis and Enterobacter predominated. In the group of Enterococci, E. faecalis predominated at wards whereas at ICU E. faecium was the most frequent. Anaerobes ranked third at normal wards and Candida spp. at ICU. From 2007 to 2011, there was an increasing resistance against ciprofloxacin in P. mirabilis (r = 0.87; p = 0.054) and against imipenem (r = 0.86; p = 0.06) and piperacillin (r = 0.81; p = 0.09) in P. aeruginosa at normal wards. At ICU, the resistance rates of imipenem in P. aeruginosa rose (r = 0.88; p = 0.049). Resistance against ciprofloxacin in E. coli increased (r = 0.65; p = 0.23). Due to the increasing use of ciprofloxacin and meropenem at normal wards, the density of antibiotic usage rose 1.4 %/year (r = 0.94; p = 0.02). Despite the increase of meropenem use at ICU (r = 0.9; p = 0.035), the total antibiotic uptake rate remained almost constant. The antibiotic usage density was 3-fold higher at ICU than at normal wards. At normal wards, the ciprofloxacin usage correlated with the rate of resistance against ciprofloxacin in P. mirabilis P. m. At ICU, an association was detected between the uptake rate of ceftazidime and the rate of resistance against cefotaxime in the CES group. In P. aeruginosa, the use of piperacillin and the rate of resistance against piperacillin correlated.

Conclusion: The high uptake rates of fluoroquinolones and carbapenems were accompanied by increases in resistances. The resistance rates are influenced by hygiene management and microbiological diagnostics. The extensive use of carbapenems should be reassessed on both units to counter further development of antibiotic resistance.

PubMed Disclaimer

MeSH terms

Substances